As high school athletes return to practice and games for a variety of sports, the threat of concussions remains. A new study from researchers at Children’s Hospital of Philadelphia (CHOP) used head impact sensors in four different sports and studied male and female athletes to determine which of these sports put students at the highest risk for head impacts that could lead to concussions. The findings were published online by the Orthopaedic Journal of Sports Medicine.
“Adolescents are particularly vulnerable to concussion because they frequently participate in sporting and recreational activities and have slower recovery periods compared to adults,” said Kristy Arbogast, PhD, senior author and co-lead of the Minds Matter Concussion Program at CHOP. “Providing reliable data on head impact exposure and sport-specific mechanisms may help sports organizations identify strategies to reduce impact exposure and lower the risk of acute injury.
For well over a decade now, scientists have been experimenting with “couch potato” drugs that could confer the benefits of exercise without having to flex a muscle. The latest candidate is a small molecule inhibitor impeding the degradation of prostaglandin E2 (PGE2), recently shown to act directly on mature muscle fibers to prevent deleterious molecular changes that arise with aging, according to Helen Blau, professor of microbiology and immunology and director of the Baxter Laboratory for Stem Cell Biology at Stanford University School of Medicine.
In gel form, PGE2 is already being used to induce labor and treat respiratory distress in newborns, says Blau. It now appears that restoring PGE2 later in life could be a way to rejuvenate aging muscles and possibly treat conditions such as age-related muscle atrophy (sarcopenia), Duchenne muscular dystrophy, and other myopathies.
The National Academy of Engineering (NAE) has announced that two MIT professors have been jointly awarded the Bernard M. Gordon Prize for Innovation in Engineering and Technology Education, the most prestigious engineering education award in the United States.
Linda G. Griffith, the School of Engineering Professor of Teaching Innovation in the Department of Biological Engineering, and Douglas A. Lauffenburger, the Ford Professor of Biological Engineering, Chemical Engineering and Biology, were recognized for their respective contributions to “the establishment of a new biology-based engineering education, producing a new generation of leaders capable of addressing world problems with innovative biological technologies,” according to an NAE statement.
Gilda A. Barabino, Ph.D., President of Olin College of Engineering, has been selected as president-elect of the American Association for the Advancement of Science.
Barabino was elected as an AAAS Fellow in 2010 and has been a member of the organization since 1987. She began her term on Feb. 24. After serving for one year as president-elect, Barabino will serve one year as AAAS president and then one year as chair of the AAAS Board of Directors.
Purigen Biosystems, Inc., a leading provider of next-generation technologies for extracting and purifying nucleic acids from biological samples, today announced the launch of the Ionic® FFPE Complete Purification Kit. Scientists are now able to consistently recover both DNA and RNA (mRNA and miRNA) simultaneously from formalin-fixed, paraffin-embedded (FFPE) tissue samples in a single workflow. Purigen is showcasing the advantages of the new kit during the virtual Advances in Genome Biology and Technology (AGBT) 2021 annual meeting.
New technology from Purdue University and Indiana University School of Medicine innovators may one day help patients who suffer devastating vocal injuries from surgery on the larynx.
A collaborative team consisting of Purdue biomedical engineers and clinicians from IU has tissue-engineered component tissue replacements that support reconstruction of the larynx. The team’s work is published in The Laryngoscope.
Agency for Science, Technology and Research (A*Star) senior fellow and head of NanoBio Lab Jackie Y. Ying has become the first scientist to be elected as a member to the prestigious United States National Academy of Engineering (NAE) based on her research in Singapore.
Recognised for her contributions in nanotechnology, Professor Ying, an American, is one of only two – among the 106 new American members elected – who are based outside the US, A*Star said in a statement on Thursday (Feb 11).
Michelle O’Malley has long been inspired by gut microbes. Since she began studying the herbivore digestive tract, the UC Santa Barbara chemical engineering professor has guided several students to their doctoral degrees, won early and mid-career awards (including a recognition from President Obama), attained tenure and advanced to the position of full professor. She even had three children along the way. A constant through it all: goat poop.
Building on the promise of emerging therapies to deploy the body’s “natural killer” immune cells to fight cancer, researchers at the University of Michigan Rogel Cancer Center and U-M College of Engineering have gone one step further.
They’ve developed what is believed to be the first systematic way to catch natural killer cells and get them to release cancer-killing packets called exosomes. These nano-scale exosomes are thousands of times smaller than natural killer cells — or NK cells for short — and thus better able to penetrate cancer cells’ defenses.
By bridging the conceptual divide between human language and viral evolution, MIT researchers have developed a powerful new computational tool for predicting the mutations that allow viruses to “escape” human immunity or vaccines. Its use could negate the need for high-throughput experimental techniques that are currently employed to identify potential mutations that could allow a virus to escape recognition. The computational model, based on models that were originally developed to analyze language, can predict which sections of viral surface proteins are more likely to mutate in a way that would enable viral escape, and it can also identify sections that are less likely to mutate, which would represent good targets for new vaccines.
Blocking the activity of a single protein in old mice for one month restores mass and strength to the animals’ withered muscles and helps them run longer on a treadmill, according to a study by researchers at the Stanford University School of Medicine. Conversely, increasing the expression of the protein in young mice causes their muscles to atrophy and weaken.
“The improvement is really quite dramatic” said Helen Blau, PhD, professor of microbiology and immunology. “The old mice are about 15% to 20% stronger after one month of treatment, and their muscle fibers look like young muscle. Considering that humans lose about 10% of muscle strength per decade after about age 50, this is quite remarkable.
An innovative orthopedic medical device fabricated from a novel biomaterial pioneered in the laboratory of Northwestern University professor Guillermo A. Ameer has received clearance from the U.S. Food and Drug Administration (FDA) for use in surgeries to attach soft tissue grafts to bone.
The biomaterial is the first thermoset biodegradable synthetic polymer ever approved for use in an implantable medical device. It’s unique chemical and mechanical properties enable cutting-edge implant designs that protect the soft tissue graft during insertion and optimize graft fixation to bone.
Today it was announced that Melody Swartz, William B. Ogden Professor of Molecular Engineering at the Pritzker School of Molecular Engineering (PME) at the University of Chicago, has been elected to membership in the National Academy of Medicine.
Swartz holds a joint appointment in the Ben May Department for Cancer Research and serves as deputy dean for faculty affairs at Pritzker Molecular Engineering. She is also a co-founder of the Chicago Immunoengineering Innovation Center (CIIC). Her research interests include lymphatic physiology, cancer research, and immunotherapy.
The National Academy of Medicine (NAM) has elected Georgia Tech Professor Susan Margulies to its prestigious 2020 class. Election to NAM is considered one of the highest honors in the fields of health and medicine and recognizes individuals who have demonstrated outstanding professional achievement and commitment to service. She is only the second person from Georgia Tech to receive the honor. The late Bob Nerem, founding director of the Petit Institute for Bioengineering and Bioscience, is the other.
Margulies is the Wallace H. Coulter Professor and Chair in the Wallace H. Coulter Department of Biomedical Engineering (BME) at Georgia Institute of Technology and Emory University, a shared department between the two schools. She is also a Georgia Research Alliance Eminent Scholar in Injury Biomechanics. Her research interests center around traumatic brain injury in children and ventilator-induced lung injury with a focus in these areas on prevention, intervention and treatments.
Olin College President Gilda A. Barabino has been elected to the National Academy of Medicine, the academy announced on Monday, October 19 at its annual meeting. Election to the Academy is considered one of the highest honors in the fields of health and medicine and recognizes individuals who have demonstrated outstanding professional achievement and commitment to service.
Barabino’s election honors her leadership and contributions in shaping and transforming the face of biomedical engineering through the integration of scientific discovery, engineering applications, and the preparation of a diverse biomedical workforce to improve human health, and for her seminal discoveries in sickle cell research.
Purigen Biosystems, Inc., a leading provider of next-generation technologies for extracting and purifying nucleic acids from biological samples, today announced the launch of the Ionic® Cells to Pure DNA Low Input Kit for researchers working with limited biological samples. The simplified and automated 60-minute workflow delivers high-quality DNA for the rapid investigation of genetic abnormalities or examination of disease treatment effects.
The Ionic Cells to Pure DNA Low Input Kit offers consistent recovery of DNA with yields near the theoretical maximum for as many as 100,000 down to as few as 10 cultured or sorted cells. Compared to leading column-based products, the new kit delivers up to twice the amount of DNA with a significantly higher proportion greater than 20 kb in length. Regardless of the input amount, the workflow is the same and does not require carrier RNA. The prepared DNA is ready for analysis by downstream techniques such as next-generation sequencing (NGS) or qPCR.
The temporomandibular joint (TMJ), which forms the back portion of the lower jaw and connects your jaw to your skull, is an anatomically complex and highly loaded structure consisting of cartilage and bone. About 10 million people in the United States alone suffer from TMJ dysfunction due to birth defects, trauma, or disease. Current treatments range from steroid injections that provide only a temporary pain relief, to surgical reconstructions using either prosthetic devices or donor tissue, and often fail to provide long-lasting repair. Researchers have sought a better way to treat TMJ, including investigating biological TMJ grafts grown in the lab that could integrate with the native tissues, remodel the joint over time, and provide life-long function for the patient.
A U of T Engineering spinoff company has donated its entire stock of skin-care product to health-care workers fighting the global pandemic.
Several years ago, Professor Milica Radisic (BME, ChemE) and her team developed a peptide-hydrogel biomaterial that prompts skin cells to “crawl” toward one another. The material was initially designed to help close the chronic, non-healing wounds often associated with diabetes, such as bed sores and foot ulcers.
Multiple sclerosis, an autoimmune disease of the central nervous system that affects millions worldwide, can cause debilitating symptoms for those who suffer from it.
Though treatments exist, researchers are still searching for therapies that could more effectively treat the disease, or even prevent it altogether.
Researchers at the Pritzker School of Molecular Engineering (PME) at the University of Chicago have designed a new therapy for multiple sclerosis (MS) by fusing a cytokine to a blood protein. In mice, this combination prevented destructive immune cells from infiltrating the central nervous system and decreased the number of cells that play a role in MS development, leading to fewer symptoms and even disease prevention.
On Sunday, Oct. 4, during the 2020 annual meeting, the National Academy of Engineering (NAE) will present two awards for extraordinary impact on the engineering profession. The Simon Ramo Founders Award will be presented to Frances S. Ligler for her research contributions and leadership in engineering. The Arthur M. Bueche Award will be given to Arden L. Bement Jr. for his contributions to technology research, policy, and national and international cooperation.
Frances S. Ligler is the Ross Lampe Distinguished Professor of Biomedical Engineering in the Joint Department of Biomedical Engineering in the College of Engineering at North Carolina State University and the School of Medicine and College of Arts and Sciences at the University of North Carolina at Chapel Hill. Ligler is being recognized with the Simon Ramo Founders Award “for the invention and development of portable optical biosensors, service to the nation and profession, and educating the next, more diverse generation of engineers.” The award acknowledges outstanding professional, educational, and personal achievements to the benefit of society and includes a commemorative medal.
Engineers at the University of California, Davis, will lead a consortium of universities, biomedical startups and nonprofit organizations to develop interventions for spinal cord injuries that can be applied within days of injury to improve long-term outcomes.
Karen Moxon, professor of biomedical engineering at UC Davis, will lead the five-year, $36 million contract as part of the Defense Advanced Research Project Agency, or DARPA, Bridging the Gap Plus Program. A primary goal is to develop technologies to stabilize a patient’s hemodynamic response, which includes blood flow and blood pressure, within days of injury.
On September 28, 2020, the National Science Board (NSB) announced that Roderic Pettigrew will receive its prestigious Vannevar Bush Award. The award honors science and technology leaders who have made substantial contributions to the welfare of the nation through public service in science, technology and public policy.
“Roderic Pettigrew’s passion and creativity have spurred innovation in biomedicine,” said Victor McCrary, Vice Chair of the National Science Board and Chair of the 2020 NSB Honorary Awards Subcommittee. “His reimagining of healthcare solutions is helping converge science fields, narrowing gaps between disciplines in a way that really impacts society. Pettigrew is helping us to see what might be, what could be, and what is possible.”
Rice’s Crisis Management Team plans to add a fourth and more rapid COVID-19 testing option on the Rice campus. Currently there are three sites that provide daily testing for asymptomatic students, staff and faculty who spend time on campus.
All three of these current sites (Abercrombie Engineering Laboratory, East Gym in the Tudor Fieldhouse and The Roost at Reckling Park) offer polymerase chain reaction testing. Bioengineering professor Rebecca Richards-Kortum said that her lab is working with the MD Anderson Cancer Center to develop a nucleic acid test for the fourth testing option.
As the COVID-19 pandemic continues, there is an urgent need to determine who is at greatest risk for severe disease, better understand how the disease and treatments evolve, and predict the need for resources. But to get there, researchers and clinicians need more data about what patients have experienced so far, and what factors are associated with different patient outcomes.
To provide this information, a new research consortium invites clinicians, researchers, patients and the general public to submit questions that could be answered by COVID-19 patient record data from more than 200 participating hospitals. Questions are submitted and answers are provided via a new web portal: COVID19questions.org.
Soy is widely studied for its estrogenic and anti-estrogenic effects on the body. It has been linked to a reduced risk of breast cancer and recurrence, improved heart and bone health, as well as the reduced risk of other cancers. Now researchers at Washington State University (WSU) see the potential of soy when it comes to improving post-operative treatment of bone cancer. They demonstrated the slow release of soy-based chemical compounds from a 3D-printed bone-like scaffold resulted in a reduction in bone cancer cells while building up healthy cells and reducing harmful inflammation.
Their findings, “Controlled release of soy isoflavones from multifunctional 3D printed bone tissue engineering scaffolds,” are published in the journal Acta Biomaterialia and led by graduate student Naboneeta Sarkar and Susmita Bose, PhD, professor at WSU’s School of Mechanical and Materials Engineering.
Too often in higher education, the legacy of laws, policies, and practices that have systematically denied educational opportunities to Blacks is ignored, thereby perpetuating racial inequities. In the United States, higher education is a key route to career success and upward socioeconomic mobility. Unfortunately, this path is increasingly becoming most accessible to privileged communities. As the new president of Olin College of Engineering in Massachusetts, and as a woman of color, I am in a position to help unburden higher education from systemic racism and promote positive change that extends beyond academic boundaries.
Researchers report the first successful microbial biosynthesis of the tropane alkaloids hyoscyamine and scopolamine, a class of neuromuscular blockers naturally found in plants in the nightshade family.
Describing a first-in-class fermentation-based approach for producing complex molecules, the paper lays the foundation for a controlled, flexible, cell-based manufacturing platform for essential medicines that currently rely on crop farming, according to research leader Christina Smolke, PhD, professor of bioengineering at Stanford University and CEO and co-founder of Antheia, a synthetic biology company making next-generation plant-inspired medicines.
U of T Engineering researchers have developed a new method of injecting healthy cells into damaged eyes. The technique could point the way toward new treatments with the potential to reverse forms of vision loss that are currently incurable.
Around the world, millions of people live with vision loss due to conditions such as age-related macular degeneration (AMD) or retinitis pigmentosa. Both are caused by the death of cells in the retina, at the back of the eye.
A new center hosted at the University of Chicago—co-led by the largest medical imaging professional organizations in the country—will help tackle the ongoing COVID-19 pandemic by curating a massive database of medical images to help better understand and treat the disease.
Led by Prof. Maryellen Giger of UChicago Medicine, the Medical Imaging and Data Resource Center (MIDRC) will create an open-source database with medical images from thousands of COVID-19 patients. The center will be funded by a two-year, $20 million contract from the National Institute of Biomedical Imaging and Bioengineering at the National Institutes of Health (NIH).
Injuries to the anterior cruciate ligament (ACL) are very common, and ACL injuries increase the risk of developing post-traumatic knee osteoarthritis and total knee replacement (TKR). At present, Magnetic Resonance Imaging (MRI) is the most effective imaging modality for distinguishing structural properties of the ACL in relation to adjacent musculoskeletal structures. Several multi-grading scoring systems have been developed to standardize reporting of knee joint abnormalities using MRI including the Whole-Organ Magnetic Resonance Imaging Scale (WORMS) and the Anterior Cruciate Ligament OsteoArthritis Score (ACLOAS). However, both of these grading metrics are susceptible to inter-rater variability.
Deep learning methods have recently shown potential to serve as an aid for clinicians with limited time or experience in osteoarthritis grading of the knee menisci and cartilage. Recently a team of scientists from the UCSF Center for Intelligent Imaging (ci2) evaluated the diagnostic utility of two convolutional neural networks (CNNs) for severity staging of anterior cruciate ligament (ACL) injuries. “Previous studies have developed binary classifiers to distinguish fully torn ACLs from intact ACLs,” said Nikan Namiri, medical student at UCSF School of Medicine and corresponding author. “And our study is the first to take deep learning a step further to help classify a broader spectrum of injury, which may be more useful in the clinical setting.
BioMedSA, the nonprofit corporation founded in 2005 to promote and grow San Antonio’s leading industry—health care and bioscience—will present its 2020 BioMedSA Award for Innovation in Healthcare and Bioscience to Rena Bizios, the Lutcher Brown Endowed Chair in UTSA’s Department of Biomedical Engineering.
Bizios is a globally recognized educator and researcher who has made pioneering contributions to biomedical engineering curricula as well as groundbreaking contributions to the understanding of cell-material interactions at the tissue/implant interface with applications in implant biomaterials, tissue engineering and tissue regeneration.
Researchers headed by a team at the University of Wisconsin (UW)-Madison, and the Morgridge Institute for Research, have developed a novel label-free imaging technique that exploits autofluorescence in cells to differentiate between active and off-duty T cells, at the single cell level. They suggest the technology, known as autofluorescence lifetime imaging, could be used to help evaluate T cell involvement in immunotherapies for cancer treatment or autoimmune diseases. “It’s super novel,” said the Morgridge Institute’s Melissa Skala, PhD, who is also an associate professor of biomedical engineering at UW-Madison. “Most people aren’t using these techniques—you don’t see a lot of autofluorescence studies in immunology.”
Reporting on development and tests with the technology in Nature Biomedical Engineering, the researchers commented, “Autofluorescence lifetime imaging can be used to characterize T cells in vivo in preclinical models, in clinical applications including small blood samples (such as pediatric samples) in which antibody labeling is limited, or in cultured T cells, such as those used in biomanufactured T-cell therapies.” Their paper is titled, “Classification of T-cell activation via autofluorescence lifetime imaging.
When my brother told me he had been diagnosed with COVID-19, I was scared. My memory immediately jumped to visions of his childhood struggles with asthma, which he described as having an ever-tightening chain around his chest. I thought of intubated COVID-19 patients at so many hospitals across the nation, and all of the patients who did not leave the hospitals alive. As we now know, African-American men like my brother are several times more likely to die from COVID-19 than someone who is white.
In my home state of Georgia, for example, 80 percent of all patients hospitalized due to COVID-19 in March 2020 were Black people. Nationally through June, American Indians, Native Alaskans, and Black people have had a hospitalization rate that is five times more than whites. For Hispanic people it is four times higher [2]. The compounding factors of increased rates of comorbidities, reduced access to care, limited resources inclusive of health guidance information, and even trust in mainstream medicine no doubt make these populations more vulnerable to a raging viral illness.
Many were appalled by the Central Park incident where a woman used the ethnicity of a peaceful visitor and a 911 call in a failed effort to subjugate him based on his color. However, this incident was actually a service to the nation since it unveiled just how pervasive racism is in our society. As a majority person, she knew that this core racism is so systemic, and its actuation so predictable, that she could easily weaponize it. She knew there is an imbalance of power based purely on a trivial difference in skin tone. If ever there was a question about this attitude and behavior existing broadly in our society, the Central Park incident answered it. It exists, it is real, and it has resulted in multiple shocking deaths that the world has now witnessed in anguish.
When the death of Houstonian George Floyd was observed, his torture at the knee of a purveyor of this naked truth was just too much to bear. When George took his last breath, so did the national tolerance for the societal ill that took his life and the lives before him.
It’s well known that poor air quality can lead to health problems. But research from Texas ChE faculty members Lydia Contreras and Lea Hildebrandt Ruiz uncovers new information about how air quality issues can affect important processes in the body and details how people who live in polluted areas could be at greater risk for lung disease and other illnesses.
The research, published this week in Communications Biology, examines how pollution disrupts cells’ ability to regulate themselves. The team found that when cells are exposed to a combination of pollutants typically present in congested urban areas, genetic mechanisms that lead to cholesterol production are disrupted and cells are damaged in ways not captured by traditional markers. That deregulation of cells transforms how they interact with each other, and those interactions are key to keeping cells healthy.
Kay C Dee, associate dean of learning and technology and professor of biomedical engineering, is lending her expertise in cell and tissue engineering, biomaterials, and engineering education as an associate editor of the Biomedical Engineering Society’s new Biomedical Engineering Education journal.
This international journal presents articles on the practice and scholarship of education in bioengineering, biomedical engineering, and allied fields. It documents and shares advances in the field as educators support student learning. The journal also passes along valuable insight into research, teaching, novel course content, laboratory experiments and demonstrations, educational outreach, and advising and professional development.
The COVID-19 pandemic has infected millions of people with no clear signs of abatement owing to the high prevalence, long incubation period and lack of established treatments or vaccines. Vaccines are the most promising solution to mitigate new viral strains. The genome sequence and protein structure of the 2019-novel coronavirus (nCoV or SARS-CoV-2) were made available in record time, allowing the development of inactivated or attenuated viral vaccines along with subunit vaccines for prophylaxis and treatment. Nanotechnology benefits modern vaccine design since nanomaterials are ideal for antigen delivery, as adjuvants, and as mimics of viral structures. In fact, the first vaccine candidate launched into clinical trials is an mRNA vaccine delivered via lipid nanoparticles. To eradicate pandemics, present and future, a successful vaccine platform must enable rapid discovery, scalable manufacturing and global distribution. Here, we review current approaches to COVID-19 vaccine development and highlight the role of nanotechnology and advanced manufacturing.
For people who need a lung transplant, the wait is often prolonged by the frustrating fact that most donor organs have to be discarded: Only 20% of donated lungs meet medical criteria for transplantation, translating into far fewer organs than people on waiting lists. Now, a team of researchers has shown they might be able to salvage more of these lungs by borrowing a pig’s circulatory system.
Delicate lungs recovered from donors are typically connected to perfusion machines that keep oxygen and nutrients flowing to maintain viability, but that works for only about six hours, not long enough for often-injured lung tissue to recover before the organ fails.
Harvard and MIT researchers teamed up to develop a novel screening test that could identify lung cancer a lot earlier and easier than current methods. The test detects lung cancer using nanoprobes, which send out reporter molecules that are picked up on urine analysis. This breakthrough, which is more sensitive than CT and delivers on a proof-of-concept experiment originally proposed in 2017, was recently detailed in a study published in Science Translational Medicine.
“What if you had a detector that was so small that it could circulate in your body, find the tumor all by itself, and send a signal to the outside world?” asked lead author Sangeeta Bhatia, MD, PhD, at a 2016 TED Talk. “It sounds a little like science fiction. But actually, nanotechnology allows us to do just that.
Within six weeks of announcing a successful method to fabricate custom-fit mask frames to optimize protection from the spread of COVID-19, UConn has a licensing deal with a Connecticut manufacturer to produce them.
Connecticut Biotech, a startup company headquartered in South Windsor, aims to start marketing, manufacturing, and distributing 3D-printed mask frames under the brand Secure Fit this month.
“This is an important technology that can help a lot of people by providing a specific way to make regular surgical masks more protective,” says Dr. Cato T. Laurencin, CEO of the Connecticut Convergence Institute for Translation in Regenerative Engineering. “It’s wonderful to see technology that started here in the state of Connecticut being developed by a Connecticut company.
Sure, artificial intelligence (AI) in radiology is cool. But it’s not enough to show results in a lab; the technology’s real-world impact on efficacy and efficiency also needs to be evaluated, according to a June 25 talk at the virtual annual meeting of the Society for Imaging Informatics in Medicine (SIIM).
It’s also crucial to ascertain how radiology AI affects radiologists’ perception, cognition, human factors, and workflow, according to Elizabeth Krupinski, PhD, of Emory University.
Every time you flex your bicep or stretch your calf muscle, you put your cells under stress. Every move we make throughout the day causes our cells to stretch and deform. But this cellular deformation can be dangerous, and could potentially lead to permanent damage to the DNA in our cells, and even cancer. So how is it that we’re able to keep our bodies moving without constantly destroying our cells? Thanks to a new study by Carnegie Mellon University Chemical Engineering (ChemE) Professor Kris Noel Dahl, and Associate Professor Sara Wickström of the University of Helsinki, we now know that the answer lies in a humble mineral we consume every day.
“Basically, every time we flex a muscle, we’re risking DNA damage that could lead to cancer,” says Dahl. “Or we would be, that is, if it weren’t for the calcium in our cells.”
Their recent paper published in Cell marks the first time that researchers have definitively shown how cells maintain their structural integrity despite the strain of mechanical forces.
Lydia Kavraki, the Noah Harding Professor of Computer Science at Rice, has received a National Science Foundation (NSF) Rapid Response Research grant to implement a computational pipeline to help identify fragments of SARS-CoV-2 viral proteins that could be used as targets for vaccine development.
“Efforts are already underway to produce new drug inhibitors, repurpose existing drugs and devise combination treatments for COVID-19,” said Kavraki, who is also a professor of bioengineering, electrical and computer engineering and mechanical engineering.
A long-ignored white blood cell may be central to the immune system overreaction that is the most common cause of death for COVID-19 patients—and University of Michigan researchers found that rod-shaped particles can take them out of circulation.
The No. 1 cause of death for COVID-19 patients echoes the way the 1918 influenza pandemic killed: their lungs fill with fluid and they essentially drown. This is called acute respiratory distress syndrome. But a new way of drawing immune cells out of the lungs might be able to prevent this outcome. This research is among the essential projects at U-M that have continued through the pandemic uninterrupted.
The Heather Sheardown lab (McMaster University, Canada) is home to an interdisciplinary team of scientists and trainees with expertise in ophthalmology, polymer and biomaterial engineering, chemistry, pharmaceutical formulation and drug delivery, animal/ex-vivo/in-vitro models of disease and drug delivery, early stage material design and synthesis, and synthetic method scalability optimization.
As the availability of a SARS-CoV-2 vaccine is still far off, there is an immediate global need for prophylactic prevention strategies, particularly for vulnerable populations including seniors and frontline workers. The Sheardown lab has developed a mucoadhesive polymeric micelle that allows for the encapsulation of a range of therapeutics, providing local, controlled delivery to mucosal surfaces. This technology overcomes traditional solubility concerns, allowing formulations at higher drug concentrations. Its mucosal binding significantly reduces dosing frequency, increases local bioavailability and improves clinical efficacy. Developed and validated for safety and efficacy in the eye, this system is now being repurposed for the mucosa of the respiratory tract, formulated as a nasal spray or inhaled aerosol, incorporating two treatments that are currently under study internationally: hydroxychloroquine (HCQ) and remdisivir.
With new seed grants from the UC Davis Office of Research’s COVID-19 Research Accelerator Funding Track (CRAFT), three teams of UC Davis engineers are applying their expertise toward the pandemic response to help people become safer, healthier and better-tested.
Mechanical and aerospace engineering (MAE) professor and chair Cristina Davis and chemical engineering (CHE) faculty Priya Shah, Karen McDonald and Roland Faller received $25,000 project awards for research that rapidly generates new insights about COVID-19, while biological and agricultural engineering (BAE) professor Gang Sun received a $5,000 small award to apply current research to the pandemic response. These proposals were chosen out from more than 100 applications and were awarded with the expectation that these projects will lead to larger collaborations.
Johns Hopkins researchers recently received a $195,000 Rapid Response Research grant from the National Science Foundation to, using machine learning, identify which COVID-19 patients are at risk of adverse cardiac events such as heart failure, sustained abnormal heartbeats, heart attacks, cardiogenic shock and death.
Increasing evidence of COVID-19’s negative impacts on the cardiovascular system highlights a great need for identifying COVID-19 patients at risk for heart problems, the researchers say. However, no such predictive capabilities currently exist.
“This project will provide clinicians with early warning signs and ensure that resources are allocated to patients with the greatest need,” says Natalia Trayanova, the Murray B. Sachs Professor in the Department of Biomedical Engineering at The Johns Hopkins University Schools of Engineering and Medicine and the project’s principal investigator.
In the lab of Katherine Ferrara, PhD, bubbles spell trouble for cancer cells in mice — and maybe one day for humans, too.
Specifically, Ferrara, a Stanford Medicine professor of radiology, is using “microbubbles” to damage the structure of cancer cells and cause them to die. The tiny gas-filled spheres are approved by the U.S. Food and Drug Administration and are typically used to enhance vasculature imaging in patients. However, Ferrara and her team have repurposed them for a new type of targeted cancer therapy guided by ultrasound.
The new treatment platform is designed to deliver a one-two punch. First, the microbubbles attack cancer cells, then an additional therapeutic agent, such as a gene, beckons immune cells to further pummel the tumor.
As physicians and researchers grapple with a rapidly-spreading, deadly and novel disease, they need all the help they can get. Many centers are exploring whether artificial intelligence can help fight COVID-19, extracting knowledge from complex and rapidly growing data on how to best diagnose and treat patients.
One University of Chicago and Argonne National Laboratory collaboration believes that AI can be a helpful clinical partner for a particularly important kind of medical data: images. Because severe cases of COVID-19 most often present as a respiratory illness, triggering severe pneumonia in patients, chest X-rays and thoracic CT scans are a potential exam. With a grant from the new c3.ai Digital Transformation Institute, computer-aided diagnosis expert Maryellen Giger will lead an effort to develop new AI tools that use these medical images to diagnose, monitor and help plan treatment for COVID-19 patients.
Using whole body diffusion-weighted magnetic resonance imaging (DW MRI) to evaluate the efficacy on cancer treatment in children can potentially provide a more than three-quarters cut in radiation exposure, according to new research.
A study, funded by the National Institutes of Health (NIH), published today in Radiology shows that DW MRI can track tumor response to therapy as effectively as techniques using CT scans, but without radiation.
The researchers had financial support from the NIH Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD).