The insidiousness of pancreatic cancer is how it develops without showing any definitive symptoms. In most cases, by the time it is diagnosed, it is beyond cure.
And yet, for 10 to 20 percent of patients, pancreatic cancer is caught soon enough, before it has metastasized. This provides surgeons a narrow window of time to try to treat the tumors, shrinking them enough to safely remove them.
University of Rochester engineers, imaging scientists, surgeons, and immunologists are working together on a novel imaging technology to help surgeons make the most of that narrow time frame before the cancer spreads.
USF President Rhea Law has named College of Engineering Professor Sylvia Wilson Thomas, a pioneering researcher whose national leadership and advocacy is opening the field of engineering to historically underrepresented students, as interim vice president for USF Research & Innovation.
In her new duties, Dr. Thomas will lead the division of the university responsible for managing research proposals, grants and contracts, as well as USF’s thriving innovation enterprise, which consists of the Technology Transfer Office, the USF Research Park and the Tampa Bay Technology Incubator. Already a member of the USF Research Foundation Board, Dr. Thomas will now serve as the foundation’s president and CEO.
Vanderbilt biomedical engineering professor has developed a prototype headband to measure brain activity that could have widespread application in studying and ultimately treating ADHD and other neurological disorders.
The device is lightweight, portable, and inexpensive to construct. Prototype components cost less than $250, compared to costs exceeding $10,000 for commercial systems.
Audrey Bowden, associate professor of biomedical engineering, and Hadi Hosseini, a colleague at Stanford University, set out to develop a simple device that children and teens diagnosed with attention deficit disorders could wear at home. Their initial prototype is a single-channel functional near-infrared spectroscopy (fNIRS) headband. Functional neuroimaging is a general term for technologies that spatially map brain activity over time.
Stanford researchers have developed a new synthetic molecule, called PIP-CpG, that combines a tumor-targeting agent with a molecule that triggers immune activation. This treatment, can be administered intravenously and can make its way to multiple tumor sites, where it recruits immune cells against cancer.
Three doses of this new immunotherapy prolonged the survival of six of nine laboratory mice with an aggressive triple negative breast cancer. Of the six, three appeared cured of their cancer over the duration of the months long study. A single dose of this molecule induced complete tumor regression in five of ten mice. The synthetic molecule showed similar results in a mouse model of pancreatic cancer.
Princess Imoukhuede, a leader in systems biology research, engineering education, and academic diversity initiatives, has been named the new chair of the Department of Bioengineering at the University of Washington in Seattle. The department is located in both the UW College of Engineering and the UW School of Medicine.
Her appointment is effective Jan. 1, 2022. She will hold the Hunter and Dorothy Simpson Endowed Chair and Professorship.
Imoukhuede (pronounced I-muh-KWU-e-de) is currently an associate professor of bioengineering and director of diversity initiatives in the McKelvey School of Engineering at Washington University in St. Louis.
AIMBE congratulates the following Fellows that have been recognized as the newest members of the National Academy of Medicine. To date, 101 of AIMBE Fellows have been elected to the National Academy of Medicine. 2021 newly-elected NAM members from AIMBE are:
A Vanderbilt biomedical engineering professor has developed a prototype headband to measure brain activity that could have widespread application in studying and ultimately treating ADHD and other neurological disorders.
The device is lightweight, portable, and inexpensive to construct. Prototype components cost less than $250, compared to costs exceeding $10,000 for commercial systems.
Ranu Jung has been named the founding executive director of the Institute for Integrative and Innovative Research (I³R). She will begin in December.
“We are thrilled to welcome Dr. Jung to the University of Arkansas,” said Charles Robinson, interim chancellor. “The Institute for Integrative and Innovative Research will propel the University of Arkansas as a global leader in discovery and applied innovation, and Dr. Jung is the ideal leader to help take us there. She is a world-renowned researcher and visionary.”
Pairing a newly developed gel with immunotherapy that was delivered to post-surgical mouse brains with glioblastoma, a highly malignant and deadly cancer, improved the immunotherapy’s effectiveness, report researchers from the University of North Carolina Lineberger Comprehensive Cancer Center and colleagues. The findings appeared on Oct. 6, 2021, in Science Advances.
The researchers used CAR-T cell (chimeric antigen receptor-T cell) immunotherapy, which involves harvesting immune-system T cells from a patient and genetically re-engineering them in the lab to recognize targets on the surface of cancer cells. In this mouse study, the CAR-T cells and gel were placed to fill in the area where a glioblastoma tumor had just been surgically removed. Previous studies have shown that administering T cells alone have produced limited benefit.
Artificial intelligence (AI) is showing promise in multiple medical imaging applications. Yet rigorous evaluation of these methods is important before they are introduced into clinical practice.
A multi-institutional and multiagency team led by researchers at Washington University in St. Louis is outlining a framework for objective task-based evaluation of AI-based methods and outlining the key role that physicians play in these evaluations. They also are providing techniques to conduct such evaluations, particularly in positron emission tomography (PET).
Megan Valentine, a professor of mechanical engineering and co-director of the California NanoSystems Institute at UC Santa Barbara, has been awarded a $1.8 million collaborative grant by the National Science Foundation to design and create next-generation materials inspired and empowered by biological cells. Valentine will be working alongside a team of physicists, biologists and engineers, four of whom are women.
Led by Rae Robertson-Anderson, a professor of physics and biophysics at the University of San Diego, the team also includes Jennifer Ross at Syracuse University, Moumita Das at Rochester Institute of Technology, and Michael Rust at the University of Chicago.
Northwestern biomedical engineer Guillermo A. Ameer has achieved a rare, major accomplishment. A medical product based on novel biomaterials pioneered in his laboratory will be widely available for use in musculoskeletal surgeries to directly benefit patients.
The biomaterial technology, called CITREGEN™, developed by the start-up company Acuitive Technologies, Inc., is featured in Stryker Corporation’s CITRELOCK™, an innovative device that will debut this week at the American Orthopaedic Foot and Ankle Society’s annual meeting in Charlotte, N.C. The CITRELOCK™ Tendon Fixation Device System is used to attach soft tissue grafts to bone in reconstruction surgeries and provides surgeons a differentiated design due to Ameer’s biomaterial.
Paula Hammond, an MIT Institute Professor and head of MIT’s Department of Chemical Engineering, has been chosen to serve on the President’s Council of Advisors on Science and Technology (PCAST), the White House announced today.
The council advises the president on matters involving science, technology, education, and innovation policy. It also provides the White House with scientific and technical information that is needed to inform public policy relating to the U.S. economy, U.S. workers, and national security.
Neuroscientists at MIT and Massachusetts General Hospital develop a statistical framework that describes brain-state changes patients experience under ketamine-induced anesthesia.
By developing the first statistical model to finely characterize how ketamine anesthesia affects the brain, a team of researchers at MIT’s Picower Institute for Learning and Memory and Massachusetts General Hospital have laid new groundwork for three advances: understanding how ketamine induces anesthesia; monitoring the unconsciousness of patients in surgery; and applying a new method of analyzing brain activity.
University of California-Riverside (UCR) researchers say they are studying whether they can turn edible plants like lettuce into mRNA vaccine factories.
One of the challenges with this new technology is that it must be kept cold to maintain stability during transport and storage. If this new project is successful, plant-based mRNA vaccines, which can be eaten, could overcome this challenge with the ability to be stored at room temperature.
Researchers from the Disruptive and Sustainable Technologies for Agricultural Precision (DiSTAP) interdisciplinary research group of the Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, and their local collaborators from Temasek Life Sciences Laboratory (TLL) and Nanyang Technological University (NTU), have developed the first-ever nanosensor to enable rapid testing of synthetic auxin plant hormones. The novel nanosensors are safer and less tedious than existing techniques for testing plants’ response to compounds such as herbicide, and can be transformative in improving agricultural production and our understanding of plant growth.
Regenerative medicine could hold the keys to rejuvenating older muscles, and research supporting that will be featured at the Mayo Clinic Symposium on Regenerative Medicine and Surgery. Preclinical research by Helen Blau, Ph.D., Stanford University School of Medicine, discovered a protein that triggers muscle loss and a way to block it to restore youthful muscle strength. Dr. Blau, director of the Baxter Laboratory for Stem Cell Biology at Stanford University School of Medicine, will present her research in a virtual keynote speech.
Metabolic engineers have a problem: cells are selfish. The scientists want to use microbes to produce chemical compounds for industrial applications. The microbes prefer to concentrate on their own growth.
Kristala L. Jones Prather ’94 has devised a tool that satisfies both conflicting objectives. Her metabolite valve acts like a train switch: it senses when a cell culture has reproduced enough to sustain itself and then redirects metabolic flux—the movement of molecules in a pathway—down the track that synthesizes the desired compound. The results: greater yield of the product and sufficient cell growth to keep the culture healthy and productive.
Stony Brook University’s Institute for Electrochemically Stored Energy, through the Research Foundation of SUNY, has received a major grant from the U.S Department of Energy (DOE) to further develop battery technology that could potentially be used in the creation of more efficient electric vehicles (EVs). The research, led by Esther Takeuchi, PhD, is funded through the DOE’s Office of Energy Efficiency and Renewable Energy, Vehicles Technology Office, and is part of a national research initiative to accelerate advancements in zero-emissions vehicles. The grant totals $2,285,813, effective October 1, 2021, and runs through December 2024.
President Biden announced on July 16 that he is nominating Laurie Locascio to be director of the National Institute of Standards and Technology, a $1 billion agency within the Commerce Department. Locascio spent most of her career at NIST, joining as a bioengineering researcher in 1986 and ultimately taking on a series of senior leadership roles before leaving the agency in 2017. Since then, she has been vice president for research at the Baltimore and College Park campuses of the University of Maryland.
Pending her confirmation by the Senate, Locascio will return to the agency at a moment when its responsibilities are expanding and lawmakers are proposing it play a substantial role in national innovation initiatives currently under consideration in Congress. The Biden administration is likewise taking a significant interest in NIST, proposing to expand its budget by 45% in the next fiscal year.
Most of the tests that doctors use to diagnose cancer — such as mammography, colonoscopy, and CT scans — are based on imaging. More recently, researchers have also developed molecular diagnostics that can detect specific cancer-associated molecules that circulate in bodily fluids like blood or urine.
MIT engineers have now created a new diagnostic nanoparticle that combines both of these features: It can reveal the presence of cancerous proteins through a urine test, and it functions as an imaging agent, pinpointing the tumor location. In principle, this diagnostic could be used to detect cancer anywhere in the body, including tumors that have metastasized from their original locations.
Intervertebral discs provide load support and motion between vertebrae in the spine, but when they start to break down and compress due to aging, disease or injury, a person experiences significant pain and reduced mobility. An interdisciplinary team of researchers at Washington University in St. Louis found a way to deliver new cells to the cushioning material in intervertebral discs that may restore their height, which could reduce pain and improve mobility.
Lori Setton, the Lucy & Stanley Lopata Distinguished Professor of Biomedical Engineering and chair of the Department of Biomedical Engineering in the McKelvey School of Engineering, led a team of biomedical engineering researchers in the McKelvey School of Engineering and researchers from the Department of Orthopaedic Surgery in the School of Medicine to develop a hydrogel modified with peptides that control cell attachment and cell fate.
Ultrasound is typically synonymous with prenatal care, but soon an emerging platform called focused ultrasound could treat cancer.
In a new clinical trial, oncologists Stergios Zacharoulis, MD, professor of pediatrics at Columbia’s Vagelos College of Physicians & Surgeons, and Cheng-Chia Wu, MD, PhD, assistant professor of radiation oncology, are using a focused ultrasound technique developed by Elisa Konofagou, PhD, professor of biomedical engineering and radiology at Columbia Engineering to more effectively and safely deliver chemotherapy for pediatric patients with an aggressive type of brain cancer, diffuse intrinsic pontine glioma (DIPG). The new technique works to temporarily open the blood-brain barrier, a natural protective layer in our brain, that blocks pathogens, bacteria, viruses, and other detrimental microoganisms circulating in the bloodstream from entering the central nervous system. The blood-brain barrier also limits the ability of systemic medications like chemotherapy from reaching brain tumors, making it a key challenge in effectively delivering therapies for brain tumors.
Professor Cato T. Laurencin of the University of Connecticut is the 2021 recipient of the prestigious Spingarn Medal, the highest honor of the National Association for the Advancement of Colored People (NAACP).
“This is the most iconic award of the NAACP,” says Laurencin, who serves as the University Professor and Albert and Wilda Van Dusen Distinguished Endowed Professor of Orthopaedic Surgery, Professor of Chemical Engineering, Professor of Materials Science and Engineering and Professor of Biomedical Engineering at UConn.
Synthetic biology offers a way to engineer cells to perform novel functions, such as glowing with fluorescent light when they detect a certain chemical. Usually, this is done by altering cells so they express genes that can be triggered by a certain input.
However, there is often a long lag time between an event such as detecting a molecule and the resulting output, because of the time required for cells to transcribe and translate the necessary genes. MIT synthetic biologists have now developed an alternative approach to designing such circuits, which relies exclusively on fast, reversible protein-protein interactions. This means that there’s no waiting for genes to be transcribed or translated into proteins, so circuits can be turned on much faster — within seconds.
The Biden administration’s decision to elevate the Director of the White House Office of Science and Technology Policy (OSTP) to a cabinet-level position is a win for science. Eric Lander, confirmed in May by the Senate, is now advising the president on the scientific, engineering, and technological policies of the US government. As Dr. Lander carries out this task, we hope that he keeps in mind what President Biden asked him in a letter in January: “How can we guarantee that the fruits of science and technology are fully shared across America and among all Americans?”
The challenges ahead are formidable. The devastating health and economic impacts of two major crises—climate change and the COVID-19 pandemic—have revealed deep societal fault lines that prevent the United States from drawing on the talents of all Americans to tackle these problems. Thus, there is an urgent need for smart and socially minded policy-making.
People lived without plastic until the last century or so, but most of us would find it hard to imagine how.
Plastics now are everywhere in our lives, providing low-cost convenience and other benefits in countless applications. They can be shaped to almost any task, from wispy films to squishy children’s toys and hard-core components. They have shown themselves vital in medicine and have been pivotal in the global effort to slow the spread of the COVID-19 pandemic over the past 16 months.
Plastics seem indispensable these days.
Unfortunately for the long-term, they are also nearly indestructible. Our planet now bears the weight of more than seven billion tons of plastics, with more being produced every day. An ever-growing waste stream clogs our landfills, pollutes our waterways and poses an urgent crisis for our planet.
The U.S. National Science Foundation has selected Susan S. Margulies to head the Directorate for Engineering. She is the first biomedical engineer to lead the engineering directorate, which supports fundamental research in emerging and frontier basic research areas.
Since 2017, Margulies has been professor and chair of the Wallace H. Coulter Department of Biomedical Engineering, housed jointly at the Georgia Institute of Technology and Emory University. Previously, she held positions as professor of bioengineering and neurosurgery at the University of Pennsylvania. She has won numerous awards and honors, including fellowships from the American Institute of Medical and Biological Engineering, the American Society of Mechanical Engineers, and the Biomedical Engineering Society, as well as numerous other recognitions throughout her career. Margulies is a member of the National Academy of Engineering and the National Academy of Medicine.
The University of Virginia has named pioneering physician leader Melina R. Kibbe, MD, as 17th dean of the UVA School of Medicine and chief health affairs officer for UVA Health.
Dr. Kibbe is an outstanding clinician, researcher and highly respected educator. She comes to UVA effective Sept. 15 from her role as the Colin G. Thomas Jr. Distinguished Professor and Chair of the Department of Surgery at the University of North Carolina at Chapel Hill, where she also holds an appointment in the Department of Biomedical Engineering.
The most common technique, and often the last resort, for couples struggling to conceive a child is in vitro fertilization. However, despite many advances since the first IVF baby was conceived in 1978, the procedure is still expensive and has a success rate of around 20% to 35% on the first attempt.
But thanks to the work of Richard and Loan Hill Visiting Professor Urmila Diwekar, IVF treatments may soon be personalized to individual patients to increase their chance of success. Diwekar recently received a New Science Inventions Award from ScienceFather for her work developing a mathematical procedure to provide a customized drug dosage during an IVF treatment.
Ultrasound is a non-invasive technique that uses sound waves to either generate images of tissues inside of the body, or to interact with tissues as a therapeutic tool – to break up gallstones, increase blood flow, or ablate tumors, for instance. Ultrasound contrast agents, which are typically tiny bubbles filled with gas, can enhance the reflection of ultrasound waves to improve the quality of an ultrasound image. However, commercially available contrast agents are confined to the blood vessels, typically remain in the bloodstream for less than 10 minutes, and are used in only a handful of settings in the United States.
But what if ultrasound contrast agents could leave the vasculature, persist for an extended period of time, and be customized for a specific application.
For their distinguished and continuing achievements in original research, UC Santa Barbara professors Denise Montell, Linda Petzold and Glenn Fredrickson have been elected to the National Academy of Sciences (NAS). They are among 120 members, and 30 international members, to join the academy this year.
Membership in the NAS is one of the most prestigious recognitions awarded to a scientist or engineer in the United States.
A Northwestern University-led team of researchers has signed a cooperative agreement with the Defense Advanced Research Projects Agency (DARPA) to develop a wireless, fully implantable device that will control the body’s circadian clock, halving the time it takes to recover from disrupted sleep/wake cycles.
The first phase of the highly interdisciplinary program will focus on developing the implant. The second phase, contingent on the first, will validate the device. If that milestone is met, then researchers will test the device in human trials, as part of the third phase. The full funding corresponds to $33 million over four-and-a-half years.
USF Professor Norma Alcantar—who engineered an ancient practice of cleaning water with cactus mucilage to create modern technologies—is among seven new inductees to the Florida Inventors Hall of Fame announced today.
Alcantar joins noted inventors Dean Kamen, often referred to as the modern Thomas Edison due to the breadth and scope of his inventions, and Mark Dean, who holds three patents on the original IBM personal computer and is the co-inventor of the ISA bus which revolutionized modern computing. The full list of inductees can be found…
In her laboratory in Barcelona, Spain, Miki Ebisuya has built a clock without cogs, springs or numbers. This clock doesn’t tick. It is made of genes and proteins, and it keeps time in a layer of cells that Ebisuya’s team has grown in its lab. This biological clock is tiny, but it could help to explain some of the most conspicuous differences between animal species.
Animal cells bustle with activity, and the pace varies between species. In all observed instances, mouse cells run faster than human cells, which tick faster than whale cells. These differences affect how big an animal gets, how its parts are arranged and perhaps even how long it will live. But biologists have long wondered what cellular timekeepers control these speeds, and why they vary.
On April 26, 2021 the National Academy of Sciences announced that Dr. Cato T. Laurencin was elected as a new member, making him the first surgeon to be elected to membership in the three National Academies of Sciences, Engineering and Medicine and Fellow of the National Academy of Inventors.
Laurencin is known as a world leader in biomaterials, polymeric materials science, nanotechnology, stem cell science, drug delivery systems, and a field he has pioneered, regenerative engineering. Laurencin’s papers and patents have had broad impact on human health, including pioneering the use of nanotechnology in musculoskeletal regeneration and ushering in a new era in orthopaedic therapies. For this work, Dr. Laurencin received the National Medal of Technology and Innovation, the highest honor bestowed in America for technological achievement, from President Barack Obama.
The University of Virginia today announced the appointment of Jennifer L. West as the 14th dean of the School of Engineering and Applied Science, effective July 1.
West is currently the Associate Dean for Ph.D. Education and the Fitzpatrick Family University Professor in Biomedical Engineering and Mechanical Engineering & Materials Science at the Pratt School of Engineering at Duke University. West comes to UVA with a formidable record of accomplishment and experience as a transformational researcher, award-winning teacher and mentor, and inventor and entrepreneur, with 25 years of experience in engineering education and leadership.
Tens of millions of people worldwide are affected by diseases like macular degeneration or have had accidents that permanently damage the light-sensitive photoreceptors within their retinas that enable vision.
The human body is not capable of regenerating those photoreceptors, but new advances by medical researchers and engineers at the University of Wisconsin–Madison may provide hope for those suffering from vision loss. They described their work today in the journal Science Advances.
Northwestern Engineering’s Guillermo A. Ameer has been named a fellow of the Materials Research Society for his contributions to regenerative engineering through pioneering work developing antioxidant citrate-based polymers that are useful for musculoskeletal, cardiovascular, dermal, and urological applications, rendering them enabling technologies to improve health.
Ameer is the Daniel Hale Williams Professor of Biomedical Engineering in the McCormick School of Engineering and a professor of surgery in Northwestern’s Feinberg School of Medicine. He also is founding director of Northwestern’s Center for Advanced Regenerative Engineering.
Immunotherapy, which recruits the body’s own immune system to attack cancer, has given many cancer patients a new avenue to treat the disease. But many cancer immunotherapy treatments can be expensive, have devastating side effects, and only work in a fraction of patients.
Researchers at the Pritzker School of Molecular Engineering at the University of Chicago have developed a new therapeutic vaccine that uses a patient’s own tumor cells to train their immune system to find and kill cancer.
The vaccine, which is injected into the skin just like a traditional vaccine, stopped melanoma tumor growth in mice. It even worked long-term, destroying new tumors long after the initial injection.
A commonly available ultrasound technique proved superior to a long-used approach at spotting abnormal heart rhythms and may help treat patients with this worldwide problem, according to recently published research.
The method—electromechanical wave imaging (EWI)—creates a 3D cardiac map to pinpoint electromechanical activity that causes arrhythmias, investigators with Columbia University in New York reported in Science Translational Medicine. Most care settings have this portable machine handy and can use it during ablation procedures to accurately guide the catheter to the proper area.
AIMBE is honored to recognize Gordana Vunjak-Novakovic with its Pierre Galletti Award, the Institute’s highest accolade. Including years of contributions to AIMBE and the BME community, Vunjak-Novakovic is recognized for impactful innovations in technologies to generate, understand and utilize functional human tissues, especially in regenerative engineering, studies of development and disease, while inspiring the next generation of practitioners. This award is presented to an individual in recognition of his/her contributions to public awareness of medical and biological engineering, and to the advancement of biomedical public policy in science, engineering, and education.
As high school athletes return to practice and games for a variety of sports, the threat of concussions remains. A new study from researchers at Children’s Hospital of Philadelphia (CHOP) used head impact sensors in four different sports and studied male and female athletes to determine which of these sports put students at the highest risk for head impacts that could lead to concussions. The findings were published online by the Orthopaedic Journal of Sports Medicine.
“Adolescents are particularly vulnerable to concussion because they frequently participate in sporting and recreational activities and have slower recovery periods compared to adults,” said Kristy Arbogast, PhD, senior author and co-lead of the Minds Matter Concussion Program at CHOP. “Providing reliable data on head impact exposure and sport-specific mechanisms may help sports organizations identify strategies to reduce impact exposure and lower the risk of acute injury.
For well over a decade now, scientists have been experimenting with “couch potato” drugs that could confer the benefits of exercise without having to flex a muscle. The latest candidate is a small molecule inhibitor impeding the degradation of prostaglandin E2 (PGE2), recently shown to act directly on mature muscle fibers to prevent deleterious molecular changes that arise with aging, according to Helen Blau, professor of microbiology and immunology and director of the Baxter Laboratory for Stem Cell Biology at Stanford University School of Medicine.
In gel form, PGE2 is already being used to induce labor and treat respiratory distress in newborns, says Blau. It now appears that restoring PGE2 later in life could be a way to rejuvenate aging muscles and possibly treat conditions such as age-related muscle atrophy (sarcopenia), Duchenne muscular dystrophy, and other myopathies.
The National Academy of Engineering (NAE) has announced that two MIT professors have been jointly awarded the Bernard M. Gordon Prize for Innovation in Engineering and Technology Education, the most prestigious engineering education award in the United States.
Linda G. Griffith, the School of Engineering Professor of Teaching Innovation in the Department of Biological Engineering, and Douglas A. Lauffenburger, the Ford Professor of Biological Engineering, Chemical Engineering and Biology, were recognized for their respective contributions to “the establishment of a new biology-based engineering education, producing a new generation of leaders capable of addressing world problems with innovative biological technologies,” according to an NAE statement.
Gilda A. Barabino, Ph.D., President of Olin College of Engineering, has been selected as president-elect of the American Association for the Advancement of Science.
Barabino was elected as an AAAS Fellow in 2010 and has been a member of the organization since 1987. She began her term on Feb. 24. After serving for one year as president-elect, Barabino will serve one year as AAAS president and then one year as chair of the AAAS Board of Directors.
Purigen Biosystems, Inc., a leading provider of next-generation technologies for extracting and purifying nucleic acids from biological samples, today announced the launch of the Ionic® FFPE Complete Purification Kit. Scientists are now able to consistently recover both DNA and RNA (mRNA and miRNA) simultaneously from formalin-fixed, paraffin-embedded (FFPE) tissue samples in a single workflow. Purigen is showcasing the advantages of the new kit during the virtual Advances in Genome Biology and Technology (AGBT) 2021 annual meeting.
New technology from Purdue University and Indiana University School of Medicine innovators may one day help patients who suffer devastating vocal injuries from surgery on the larynx.
A collaborative team consisting of Purdue biomedical engineers and clinicians from IU has tissue-engineered component tissue replacements that support reconstruction of the larynx. The team’s work is published in The Laryngoscope.
Agency for Science, Technology and Research (A*Star) senior fellow and head of NanoBio Lab Jackie Y. Ying has become the first scientist to be elected as a member to the prestigious United States National Academy of Engineering (NAE) based on her research in Singapore.
Recognised for her contributions in nanotechnology, Professor Ying, an American, is one of only two – among the 106 new American members elected – who are based outside the US, A*Star said in a statement on Thursday (Feb 11).
Michelle O’Malley has long been inspired by gut microbes. Since she began studying the herbivore digestive tract, the UC Santa Barbara chemical engineering professor has guided several students to their doctoral degrees, won early and mid-career awards (including a recognition from President Obama), attained tenure and advanced to the position of full professor. She even had three children along the way. A constant through it all: goat poop.