Engineering Diversity

Test Your Knowledge

Test your knowledge about
Diversity in Biomedical
Engineering!

Take the Quiz!

  • RECOGNIZING EXCELLENCE
  • TRACKING PROGRESS
  • MENTORING
  • BUILDING EVIDENCE
  • WHAT WORKS
  • RESOURCES
  • RECOGNIZING EXCELLENCE
  • TRACKING PROGRESS
  • MENTORING
  • BUILDING EVIDENCE
  • WHAT WORKS
  • RESOURCES

ENGINEERING DIVERSITY

 

Black/African American and Latinx prime-age adults are roughly a third (33 percent) of the adult population, but just 15 percent of engineers.  They continue to lag in terms of admissions to engineering programs, completion of degrees, occupational penetration, and tenure in engineering jobs.

Women are also underrepresented and underpaid in engineering. Women represent a little less than half of the employed prime-age population, but they only represent 16 percent of engineers. Women’s representation in engineering occupations has been improving, but barely.

 

 

Black/African American and Latinx engineers have lower levels of educational attainment than other engineers, but even when they have equal education, they are paid less.

 

FEATURED VIDEOS

For more videos from award-winning, diverse Biomedical Engineers, CLICK HERE.

African Americans make up 2.1% of tenured/tenure-track faculty in biomedical engineering (2018).

The American Society for Engineering Education

8% of university presidents are Black/African American.

— 2016 American Council on Education

Revolutionizing Prosthetics
Jill Higginson | July 22, 2024

Revolutionizing Prosthetics
Jill Higginson | July 22, 2024

UD research aims to improve the lives of those with limb loss

John Horne lost his right leg to bone cancer when he was a freshman in high school. This intensely personal experience spawned his career and passion for advocating for those with limb loss. The president of Independence Prosthetics-Orthotics on the University of Delaware’s Science, Technology, and Advanced Research (STAR) Campus has seen prosthetics improve significantly since his limb loss and since he was an undergraduate student at UD, interning at Nemours Children’s Health, where he poured prosthetic molds.

Now, Horne is part of pioneering research led by George W. Laird Professor of Mechanical Engineering Jill Higginson in the Neuromuscular Biomechanics Laboratory along with co-investigators Elisa Arch, associate professor of kinesiology and applied physiology, and Meg Sions, associate professor of physical therapy, in the College of Health Sciences. The study aims to test the potential of fabric-based sensors in monitoring load in individuals with limb loss, a development that could revolutionize the field of prosthetics and significantly improve the lives of those with limb loss.

Continue reading.

CI MED Researchers to Develop Tools to Track Inflammation in Human Tissue as Chan Zuckerberg Biohub Chicago Investigators
Amy Wagoner Johnson | July 22, 2024

CI MED Researchers to Develop Tools to Track Inflammation in Human Tissue as Chan Zuckerberg Biohub Chicago Investigators
Amy Wagoner Johnson | July 22, 2024

Twelve Carle Illinois College of Medicine (CI MED) researchers have been chosen as part of the inaugural group of investigators probing the role of inflammation and the function of the immune system in disease, including one CI MED-based team examining inflammation’s role in female reproductive disorders.

The Chan Zuckerberg Biohub Chicago was announced in 2023 to leverage the expertise of researchers from a range of disciplines to develop technologies capable of making precise, molecular-level measurements of biological processes within human tissues. The longer-range goal is understanding and treating the inflammatory states that underlie many diseases.

Continue reading.

Lola Eniola-Adefeso named College of Engineering dean
Lola Eniola-Adefeso | July 16, 2024

Lola Eniola-Adefeso named College of Engineering dean
Lola Eniola-Adefeso | July 16, 2024

I am pleased to announce that following a national search, Omolola “Lola” Eniola-Adefeso, PhD, has been named dean of the University of Illinois Chicago College of Engineering, effective Oct. 16, pending approval by the University of Illinois Board of Trustees.

Professor Eniola-Adefeso is a highly respected chemical and biomedical engineer with over 25 years of professional experience. An accomplished scholar, she has published more than 70 peer-reviewed publications and secured millions of dollars in federal research funding. Eniola-Adefeso has a strong track record of adopting an interdisciplinary approach to her work, and her entrepreneurial successes have resulted in three patent filings, with one patent currently being licensed to a biotech company. She also is highly recognized in the scientific community, as demonstrated by numerous national awards and her current leadership positions as the president of the American Institute for Medical and Biological Engineering and director of the American Institute of Chemical Engineers. She also participates on the National Academies Study Committee: Quadrennial Review of the National Nanotechnology Initiative.

Continue reading.

3D Printing and Citrate Biomaterials Could Allow Dissolvable Stents
Guillermo Ameer | June 14, 2024

3D Printing and Citrate Biomaterials Could Allow Dissolvable Stents
Guillermo Ameer | June 14, 2024

Implanted stents have saved countless lives. A tiny metal mesh coil, stents keep arteries open for blood to flow that’s crucial to the body to function after a traumatic angioplasty or cardiac event.

That doesn’t mean they’re a perfected technology.

Stents themselves can also develop plaque due to the systemic nature of the same cardiovascular disease they were implanted to counteract. With cardiovascular disease the leading cause of death globally, according to the World Health Organization, the need for more effective stents has never been greater.

Continue reading.

Carolina collaboration yields next-generation medical bandage
Juliane Nguyen | June 13, 2024

Carolina collaboration yields next-generation medical bandage
Juliane Nguyen | June 13, 2024

From chronic wounds to battlefield triage to heart surgery, this self-sticking bandage is designed to adapt to any body surface, internal or external, creating a bond stronger than current FDA-approved adhesives. The applications of this innovation are detailed in Nature Communications.

“Our patch mimics the skin’s expandability and flexibility, stretching as a person moves,” says principal investigator Juliane Nguyen, professor in the UNC Eshelman School of Pharmacy. “Normal bandages contract in one direction as they expand in another. Ours are designed to expand in both directions, preventing tissue damage and promoting adhesion.”

Continue reading.

Advancing Antiracism, Diversity, Equity, and Inclusion in STEMM Organizations
National Academies

Advancing Antiracism, Diversity, Equity, and Inclusion in STEMM Organizations
National Academies

People from minoritized racial and ethnic groups continue to face numerous systemic barriers that impede their ability to access, persist, and thrive in STEMM higher education and the workforce.

To promote a culture of antiracism, diversity, equity, and inclusion (ADEI) in STEMM, organizations must actively work to dismantle policies and practices that disadvantage people from minoritized groups.

Continue reading.

What Can We Do to Combat Anti-Black Racism in the Biomedical Research Enterprise?
NIH

What Can We Do to Combat Anti-Black Racism in the Biomedical Research Enterprise?
NIH

The recent deaths of George Floyd, Ahmaud Arbery, and Breonna Taylor, in addition to the disproportionate burden of COVID-19 on African Americans, are wrenching reminders of the many harms that societal racism, inequality, and injustice inflict on the Black community. These injustices are rooted in centuries of oppression—including slavery and Jim Crow, redlining, school segregation, and mass incarceration—that continue to influence American life, including the biomedical research enterprise. Despite leading an NIH Institute whose mission includes building a diverse scientific workforce, at NIGMS we’ve struggled with what an adequate response to this moment would be, knowing that the systems that mediate the distinct and disparate burdens Black students, postdocs, and scientists face are complex and often aren’t easily moved with the urgency that they demand. With that in mind, below we share thoughts on what each of us who is in the majority or in a position of power can do to help break the cycles of racial disparities that are woven into the fabric of the biomedical research enterprise and that limit opportunities Link to external web site for Black scientists Link to external web site.

Institutional structures, policies, and cultures Link to external web site, including those in the biomedical research enterprise, all contribute to racial inequality and injustice. This fact was laid bare for us by the responses to the request for information (RFI) we issued in 2018 on strategies to enhance successful postdoctoral career transitions to promote faculty diversity. Respondents cited bias and discrimination—including racism—most frequently as a key barrier to postdoctoral researchers attaining independent faculty positions.

Continue reading.

Combating sexual harassment
Science

Combating sexual harassment
Science

Sexual harassment, including gender harassment, presents an unacceptable barrier that prevents women from achieving their rightful place in science, and robs society and the scientific enterprise of diverse and critical talent. As the largest single funder of biomedical research in the world, the U.S. National Institutes of Health (NIH) bears a responsibility to take action to put an end to this behavior. In 2019, the NIH began to bolster its policies and practices to address and prevent sexual harassment. This included new communication channels to inform the agency of instances of sexual harassment related to NIH-funded research. This week, the NIH announces a change that will hold grantee institutions and investigators accountable for this misconduct, to further foster a culture whereby sexual harassment and other inappropriate behaviors are not tolerated in the research and training environment.

Last year, an Advisory Committee to the Director (ACD) of the NIH presented a report and recommendations to end sexual harassment. A major theme of this report was the need for increased transparency and accountability in the reporting of professional misconduct, especially sexual harassment. The cases of sexual harassment that surfaced in the wake of the U.S. National Academies of Sciences, Engineering, and Medicine (NASEM) 2018 report highlighted a substantial gap in the NIH’s oversight of the research enterprise: There was no straightforward mechanism for the agency to learn of sexual harassment or other misconduct taking place at grantee institutions in the context of NIH-funded research. It was not uncommon for the NIH to discover such cases through the media, amid rightful public outcry. Holding institutions and investigators accountable for this behavior was challenging.

Continue reading.

White Academia: Do Better.
Medium

White Academia: Do Better.
Medium

Over the past couple of weeks, our nation has been confronted with ugly truths and hard history revealing how systemic racism rears its head in almost every space. Since the COVID-19 pandemic has slowed down our typical lifestyles, people seem to be listening.

This moment feels very different from other situations when we had to address human rights in the context of race relations in the United States. With that comes a host of emotions that White people have rarely had to deal with because of their racial privilege, and this includes White people working in academia.

Like many Black faculty, and Black people in general, I have received messages and texts from White colleagues apologizing, expressing their guilt and remorse, and asking what they can do to support their Black colleagues and friends.

Continue reading.

Guidelines for Diversity & Inclusion in Crisis
Juan E. Gilbert, PhD

Guidelines for Diversity & Inclusion in Crisis
Juan E. Gilbert, PhD

I am writing these guidelines in response to the recent events that have impacted the Black community, specifically, the Black computing community. As the Department Chair of the Computer & Information Science & Engineering (CISE) Department at the University of Florida, I lead, one of, if not, the nation’s most diverse computing sciences (CS) department. We have the nation’s most Black CS faculty and PhD students. We are one of the top CS departments for the number of female faculty. As a researcher, I have had the honor of producing the nation’s most Black/African-American CS PhDs. I have also had the honor of hiring and promoting the most Black faculty in CS. My experiences span more than 20 years and those experiences are the foundation for these guidelines.

Continue reading.