Engineering Diversity

Test Your Knowledge

Test your knowledge about
Diversity in Biomedical
Engineering!

Take the Quiz!

  • RECOGNIZING EXCELLENCE
  • TRACKING PROGRESS
  • MENTORING
  • BUILDING EVIDENCE
  • WHAT WORKS
  • RESOURCES
  • RECOGNIZING EXCELLENCE
  • TRACKING PROGRESS
  • MENTORING
  • BUILDING EVIDENCE
  • WHAT WORKS
  • RESOURCES

ENGINEERING DIVERSITY

ENGINEERING DIVERSITY

Biomedical Engineering workforce diversity, capitalizing on the full spectrum of skills, talents, and viewpoints, is essential for solving complex human health challenges. The participation of underrepresented individuals in engineering and medicine is a critical issue affecting our nation’s health and the future of research. The urgent national challenge to diversify the scientific workforce calls for research universities, academic medical centers, and national stakeholders to take action.

Women receive only 37% of Ph.D.’s in Biomedical Engineering. (2016)

The American Society for Engineering Education 

 

FEATURED VIDEOS

For more videos from award-winning, diverse Biomedical Engineers, CLICK HERE.

African Americans make up less than 2% of tenured/tenure-track faculty in biomedical engineering (2016).

The American Society for Engineering Education

The gender wage gap is within 3% for women in biomedical engineering.

–2016 American Community Survey, US Census Bureau

Identifying Cancer-Driving Gene Mutations – An Interview by Cancer Network
Rachel Karchin | Dec. 20, 2018

Identifying Cancer-Driving Gene Mutations – An Interview by Cancer Network
Rachel Karchin | Dec. 20, 2018

Rachel Karchin, PhD, is a professor of biomedical engineering, oncology, and computer science, with joint appointments at the Whiting School of Engineering and School of Medicine at Johns Hopkins University in Baltimore. She is a core member of the Institute for Computational Medicine.

A computational biologist, Dr. Karchin develops algorithms and software to analyze genomic data and interpret its impact on human disease. Her most recent work has focused on cancer and the effects of germline and somatic alterations and their contributions to progression models of tumor evolution. She led the computational efforts to identify driver mutations for the Johns Hopkins Sidney Kimmel Cancer Center’s pioneering cancer sequencing projects, and she co-led The Cancer Genome Atlas (TCGA) PanCancer Atlas Essential Genes and Drivers Analysis Working Group.

Continue reading.

Fabrication of Shape-conformable Batteries Based on 3D-printing Technology
Jennifer A. Lewis | Dec. 19, 2018

Fabrication of Shape-conformable Batteries Based on 3D-printing Technology
Jennifer A. Lewis | Dec. 19, 2018

Flexible, wireless electronic devices are rapidly emerging and have reached the level of commercialization; nevertheless, most of battery shapes are limited to either spherical and/or rectangular structures, which results in inefficient space use. Professor Il-Doo Kim’s team from the Department of Materials Science at KAIST has successfully developed technology to significantly enhance the variability of battery design through collaboration research with Professor Jennifer A. Lewis and her team from the School of Engineering and Applied Sciences at Harvard University.

Most of the battery shapes today are optimized for coin cell and/or pouch cells. Since the battery as an energy storage device occupies most of the space in microelectronic devices with different designs, new technology to freely change the shape of the battery is required.

Continue reading.

FDA approves device based on Vanderbilt invention to ID parathyroid during head and neck surgeries
Anita Mahadevan-Jansen | Dec. 17, 2018

FDA approves device based on Vanderbilt invention to ID parathyroid during head and neck surgeries
Anita Mahadevan-Jansen | Dec. 17, 2018

Ten years after Professor of Biomedical Engineering Anita Mahadevan-Jansen discovered that parathyroid tissues glow under near-infrared light, the FDA has approved a device based on the technology for surgical use.

She and her team developed the technology at the Vanderbilt Biophotonics Center. The device called “PTeye” has been tested at Vanderbilt University Medical Center and Ohio State University Medical Center in an 81-patient clinical study, leading to regulatory approval. It enables real-time identification of parathyroid tissue during thyroid and parathyroid surgeries.

Continue reading.

Researchers evaluate pMSCs sheets for engineered repair and regeneration of heart tissue
Joyce Wong | Dec. 7, 2018

Researchers evaluate pMSCs sheets for engineered repair and regeneration of heart tissue
Joyce Wong | Dec. 7, 2018

The placenta offers an abundant source of placenta-derived mesenchymal stem cells (pMSCs), which a new study has shown can readily form cell sheets that could be implanted in children with congenital heart defects and offer benefits for heart repair and regeneration compared to commonly used synthetic material-based scaffolds. Congenital heart disease is the leading cause of birth-defect-related illness and death. The placenta can be readily collected at birth and the cells harvested for pediatric reparative procedures, as described in the study published in Tissue Engineering, Part A, peer-reviewed journal from Mary Ann Liebert, Inc., publishers. Click here to read the full-text article free on the Tissue Engineering website through January 7, 2019.

Sitaram Emani, MD, Breanna Piekarski, RN, and Sirisha Emani, Children’s Hospital, Boston, MA and Erin Roberts, Kevin Huang, and Joyce Wong, PhD, Boston University, MA are the coauthors of the article entitled “Evaluation of Placental Mesenchymal Stem Cell Sheets for Myocardial Repair and Regeneration .” In the study, the researchers evaluated MSCs independent of their source, demonstrated their ability to form cell sheets, and described other beneficial effects related to paracrine section and cell-cell interactions at the site of MSC implantation. The ability of MSCs to secrete factors to induce cardioprotection, stimulate angiogenesis, and promote migration, proliferation and differentiation of local cardiac stem cells can all affect tissue repair.

Continue reading.

JenaValve Technology Receives FDA Approval for Expanded IDE Enrollment in the Treatment of Patients with Severe Aortic Stenosis and Severe Aortic Regurgitation
Victoria Carr-Brendel | Dec. 3, 2018

JenaValve Technology Receives FDA Approval for Expanded IDE Enrollment in the Treatment of Patients with Severe Aortic Stenosis and Severe Aortic Regurgitation
Victoria Carr-Brendel | Dec. 3, 2018

JenaValve Technology, Inc., a developer and manufacturer of differentiated transcatheter aortic valve replacement (TAVR) systems, today announced U.S. Food and Drug Administration (FDA) approval of expansion of its Investigational Device Exemption (IDE) feasibility studies for the JenaValve Pericardial TAVR System with the Everdur™ transcatheter heart valve (THV) and Coronatix TM Transfemoral Delivery Catheter. The approval expands eligible patient enrollment from 20 patients at extreme or high surgical risk (10 aortic stenosis [AS], 10 aortic regurgitation [AR]) to 80 patients at extreme or high surgical risk (40 AS, 40 AR) at up to 10 U.S. sites.

The prospective IDE studies are part of a larger, ongoing CE Mark clinical program investigating the JenaValve Pericardial TAVR System for the same indications at centers of excellence in Europe and New Zealand.

Continue reading.

Not One More Generation: Women in Science Take on Sexual Harassment
ASBMB Today

Not One More Generation: Women in Science Take on Sexual Harassment
ASBMB Today

I was driven out of science by a harasser in the 1980s.”

Coming from a woman who has since helped to found a scientific society, served as director of the Genetics Society of America and presented her research on sexual harassment to a 2018 National Academies panel, it is a surprising statement. But Sherry Marts left academia after finishing her Ph.D. at Duke and never went back.

2018 has been a banner year for confronting sexual harassment in science. The National Academies of Sciences, Engineering and Medicine published a report on the high prevalence of harassment of women in science, and the National Institutes of Health and National Science Foundation are updating their sexual harassment policies. It appears that science might be catching up with the #MeToo movement, which has raised awareness of workplace sexual harassment. However, critics say that large institutions are moving too incrementally and could do much more.

Continue reading.

Why we’re editing women scientists onto Wikipedia
Nature

Why we’re editing women scientists onto Wikipedia
Nature

Marie Curie is one of the most famous women in science. But her first page on Wikipedia was shared with her husband — until someone pointed out that, perhaps, her scientific contributions were notable enough to warrant her own biography.

That’s the beauty of Wikipedia. It is the fifth most popular website in the world and notches up more than 32 million views a day. A community of volunteer editors collaboratively edit, update and add content to democratize access to a common and constantly updating collection of knowledge. But as with any democracy, results are determined by those who choose to participate. Who edits Wikipedia — and the biases they carry with them — matters.

Continue reading.

Closing diversity gaps in patenting is essential to innovation economy
The Hill

Closing diversity gaps in patenting is essential to innovation economy
The Hill

In 1871, Margaret Knight earned a patent for inventing a brown paper bag with a flat bottom, the same model that is used in most grocery stores across the country today. More than a century later, African American inventor Lonnie Johnson received a patent for his Super Soaker water gun, a toy that has generated more than $1 billion in sales and has been among the top 20 best selling toys in the world every year since 1991.

The commercial success these inventors enjoyed was based on a strong and open patent system. Except for individuals held in slavery, the U.S. patent system has always welcomed all inventors by awarding patents regardless of race, gender, or economic status. It is an essential engine of innovation. Economic activity from patents in the United States is estimated at more than $8 trillion and intellectual property industries directly and indirectly support 30 percent of all U.S. employment.

Continue reading.

New analysis of funding trends offers encouraging news for female investigators—with caveats
Science

New analysis of funding trends offers encouraging news for female investigators—with caveats
Science

Once female scientists receive a major research project grant from the National Institutes of Health (NIH), their funding futures are quite similar to those of their male peers, a new study reports. That suggests gender represents a small, and shrinking, barrier to success in a biomedical science career, the authors argue, and it emphasizes the importance of encouraging women to apply for grants in the first place. Yet these statistics belie the significant systemic hurdles that persist for many women, others say.

The study helps illustrate where work remains to be done to truly make opportunities in science equal for men and women, says Donna Ginther, a professor of economics at the University of Kansas in Lawrence who studies the scientific workforce, and who wasn’t involved with the study. “The more evidence we have about where [bias] is happening and where it’s not happening in the pipeline, the better we’ll be able to address those problems.”

Continue reading.

Bias, Diversity, Backlash, Manifestos, and Rebuttals
Code Like A Girl

Bias, Diversity, Backlash, Manifestos, and Rebuttals
Code Like A Girl

Have you ever been in a meeting where a colleague says “I’m a great supporter of gender equality, but I’m totally opposed to quotas!” Or, “I believe in diversity, but I won’t stand for positive discrimination.” Maybe you felt a bit troubled by such statements, thinking: that sounds fair, but somehow I don’t think it is… how do I rebut this?

Bias is omnipresent in our society, and some of us are keenly aware of rampant bias in sectors like technology, engineering and politics. Efforts to thwart the effects of bias in communities and institutions prompt a spectrum of diversity initiatives. Many times these lead to backlash. It’s been just a year since the memo “Google’s Ideological Echo Chamber” spread through the company’s internal channels, then became public. Yet, another wrangle is already blasting online with the article “Why Women Don’t Code,” by a university lecturer. What do we do when privileged individuals continue to turn a blind eye on the injustices around them? They insist on points like “women are less likely to choose computer science,” and that it’s just due to natural differences.

Continue reading.