Engineering Diversity

Test Your Knowledge

Test your knowledge about
Diversity in Biomedical
Engineering!

Take the Quiz!

  • RECOGNIZING EXCELLENCE
  • TRACKING PROGRESS
  • MENTORING
  • BUILDING EVIDENCE
  • WHAT WORKS
  • RESOURCES
  • RECOGNIZING EXCELLENCE
  • TRACKING PROGRESS
  • MENTORING
  • BUILDING EVIDENCE
  • WHAT WORKS
  • RESOURCES

ENGINEERING DIVERSITY

 

Black/African American and Latinx prime-age adults are roughly a third (33 percent) of the adult population, but just 15 percent of engineers.  They continue to lag in terms of admissions to engineering programs, completion of degrees, occupational penetration, and tenure in engineering jobs.

Women are also underrepresented and underpaid in engineering. Women represent a little less than half of the employed prime-age population, but they only represent 16 percent of engineers. Women’s representation in engineering occupations has been improving, but barely.

 

 

Black/African American and Latinx engineers have lower levels of educational attainment than other engineers, but even when they have equal education, they are paid less.

 

FEATURED VIDEOS

For more videos from award-winning, diverse Biomedical Engineers, CLICK HERE.

African Americans make up 2.1% of tenured/tenure-track faculty in biomedical engineering (2018).

The American Society for Engineering Education

8% of university presidents are Black/African American.

— 2016 American Council on Education

Deep learning model detects COVID-19 infection using lung imaging
Bisi Bell | March 26, 2024

Deep learning model detects COVID-19 infection using lung imaging
Bisi Bell | March 26, 2024

A deep neural network-based automated detection tool could assist emergency room clinicians in diagnosing COVID-19 effectively using lung ultrasound images.

Johns Hopkins researchers have developed a deep learning-based model to detect COVID-19 infection using lung ultrasound images, according to a study published recently in Communications Medicine.

The automated detection tool uses deep neural networks (DNNs) to identify COVID-19 features in lung ultrasound B-mode images and may help clinicians diagnose emergency department patients more efficiently.

Continue reading.

This implant will tell a smartphone app when you need to pee
Guillermo Ameer | March 25, 2024

This implant will tell a smartphone app when you need to pee
Guillermo Ameer | March 25, 2024

The stretchy, wireless sensor could keep patients with bladder issues informed in real-time.

For people dealing with spina bifida, paralysis, and various bladder diseases, determining when to take a bathroom break can be an issue. To help ease the frequent stress, researchers at Northwestern University have designed a sensor array that attaches to the bladder’s exterior wall, enabling it to detect its fullness in real time. Using embedded Bluetooth technology, the device then transmits its data to a smartphone app, allowing users to monitor their bodily functions without far less discomfort and guesswork.

The new tool, detailed in a study published today in the Proceedings of the National Academy of Sciences (PNAS), isn’t only meant to prevent incontinence issues. Lacking an ability to feel bladder fullness extends far beyond the obvious inconveniences—for millions of Americans dealing with bladder dysfunctions, not knowing when to go to the bathroom can cause additional organ damage such as regular infections and kidney damage. To combat these issues, the new medical device mirrors the bladder’s own elasticity.

Continue reading.

A lung-mimicking sealant helps repair surgical leaks
Gordana Vunjak-Novakovic | March 12, 2024

A lung-mimicking sealant helps repair surgical leaks
Gordana Vunjak-Novakovic | March 12, 2024

A superior surgical sealant mimics the structural and mechanical properties of lung tissue to repair air leaks after surgery.

A new sealant meant to mimic lung tissue has been shown to rapidly cork air leaks following surgery. Moreover, the protein-like molecules within the sealant were found to potentially help with wound repair.

“Our lung-mimetic sealant is designed with a structure similar to that of the healthy lung, allowing the sealant to deform in a similar way as the breathing lung,” explained Meghan Pinezich, researcher at Columbia University in the US, and first author on the study, in an email.

Continue reading.

How AI-powered handheld devices are boosting disease diagnostics – from cancer to dermatology
Irving Bigio | March 12, 2024

How AI-powered handheld devices are boosting disease diagnostics – from cancer to dermatology
Irving Bigio | March 12, 2024

In the past, artificial intelligence (AI) in healthcare was mostly in the hands of specialists — experts in marrying supercomputers to hefty hospital devices. Now, thanks to a new breed of compact, handheld AI-assisted disease-detection devices, that is changing. Healthcare AI is increasingly in the hands (and the pockets) of non-specialists.

Lightweight, battery-powered handheld healthcare AI devices made a splash in January 2024 with the arrival of a portable device for detecting skin cancer. Approved for marketing by the US Food and Drug Administration (FDA) under the brand name DermaSensor, the device looks like an oversized cellphone. It is approved for use solely by physicians, and only in patients over 40 years of age, to help in the evaluation of skin lesions suggestive of three types of skin cancer: melanoma, basal cell carcinoma and squamous cell carcinoma.

Continue reading.

Metal-Organic Nanoparticles Enable Better Vaccine Delivery, Stronger Immune Response
Ana Jaklenec | March 6, 2024

Metal-Organic Nanoparticles Enable Better Vaccine Delivery, Stronger Immune Response
Ana Jaklenec | March 6, 2024

Scientists from the Massachusetts Institute of Technology (MIT) and elsewhere have published a paper in Science Advances that describes a type of nanoparticle for delivering vaccines called a metal organic framework (MOF) that can potentially provoke a strong immune response at lower doses. The paper is titled “Zeolitic Imidazolate Frameworks Activate Endosomal Toll-like Receptors and Potentiate Immunogenicity of SARS-CoV-2 Spike Protein Trimer.”

In the study, which was done in mice, the researchers showed that the MOF successfully encapsulated and delivered part of the SARS-CoV-2 spike protein while simultaneously acting as an adjuvant once it broke down inside cells. More work is needed to ensure that the particles can be used safely in human vaccines, but these early results are promising.

Continue reading.

Advancing Antiracism, Diversity, Equity, and Inclusion in STEMM Organizations
National Academies

Advancing Antiracism, Diversity, Equity, and Inclusion in STEMM Organizations
National Academies

People from minoritized racial and ethnic groups continue to face numerous systemic barriers that impede their ability to access, persist, and thrive in STEMM higher education and the workforce.

To promote a culture of antiracism, diversity, equity, and inclusion (ADEI) in STEMM, organizations must actively work to dismantle policies and practices that disadvantage people from minoritized groups.

Continue reading.

What Can We Do to Combat Anti-Black Racism in the Biomedical Research Enterprise?
NIH

What Can We Do to Combat Anti-Black Racism in the Biomedical Research Enterprise?
NIH

The recent deaths of George Floyd, Ahmaud Arbery, and Breonna Taylor, in addition to the disproportionate burden of COVID-19 on African Americans, are wrenching reminders of the many harms that societal racism, inequality, and injustice inflict on the Black community. These injustices are rooted in centuries of oppression—including slavery and Jim Crow, redlining, school segregation, and mass incarceration—that continue to influence American life, including the biomedical research enterprise. Despite leading an NIH Institute whose mission includes building a diverse scientific workforce, at NIGMS we’ve struggled with what an adequate response to this moment would be, knowing that the systems that mediate the distinct and disparate burdens Black students, postdocs, and scientists face are complex and often aren’t easily moved with the urgency that they demand. With that in mind, below we share thoughts on what each of us who is in the majority or in a position of power can do to help break the cycles of racial disparities that are woven into the fabric of the biomedical research enterprise and that limit opportunities Link to external web site for Black scientists Link to external web site.

Institutional structures, policies, and cultures Link to external web site, including those in the biomedical research enterprise, all contribute to racial inequality and injustice. This fact was laid bare for us by the responses to the request for information (RFI) we issued in 2018 on strategies to enhance successful postdoctoral career transitions to promote faculty diversity. Respondents cited bias and discrimination—including racism—most frequently as a key barrier to postdoctoral researchers attaining independent faculty positions.

Continue reading.

Combating sexual harassment
Science

Combating sexual harassment
Science

Sexual harassment, including gender harassment, presents an unacceptable barrier that prevents women from achieving their rightful place in science, and robs society and the scientific enterprise of diverse and critical talent. As the largest single funder of biomedical research in the world, the U.S. National Institutes of Health (NIH) bears a responsibility to take action to put an end to this behavior. In 2019, the NIH began to bolster its policies and practices to address and prevent sexual harassment. This included new communication channels to inform the agency of instances of sexual harassment related to NIH-funded research. This week, the NIH announces a change that will hold grantee institutions and investigators accountable for this misconduct, to further foster a culture whereby sexual harassment and other inappropriate behaviors are not tolerated in the research and training environment.

Last year, an Advisory Committee to the Director (ACD) of the NIH presented a report and recommendations to end sexual harassment. A major theme of this report was the need for increased transparency and accountability in the reporting of professional misconduct, especially sexual harassment. The cases of sexual harassment that surfaced in the wake of the U.S. National Academies of Sciences, Engineering, and Medicine (NASEM) 2018 report highlighted a substantial gap in the NIH’s oversight of the research enterprise: There was no straightforward mechanism for the agency to learn of sexual harassment or other misconduct taking place at grantee institutions in the context of NIH-funded research. It was not uncommon for the NIH to discover such cases through the media, amid rightful public outcry. Holding institutions and investigators accountable for this behavior was challenging.

Continue reading.

White Academia: Do Better.
Medium

White Academia: Do Better.
Medium

Over the past couple of weeks, our nation has been confronted with ugly truths and hard history revealing how systemic racism rears its head in almost every space. Since the COVID-19 pandemic has slowed down our typical lifestyles, people seem to be listening.

This moment feels very different from other situations when we had to address human rights in the context of race relations in the United States. With that comes a host of emotions that White people have rarely had to deal with because of their racial privilege, and this includes White people working in academia.

Like many Black faculty, and Black people in general, I have received messages and texts from White colleagues apologizing, expressing their guilt and remorse, and asking what they can do to support their Black colleagues and friends.

Continue reading.

Guidelines for Diversity & Inclusion in Crisis
Juan E. Gilbert, PhD

Guidelines for Diversity & Inclusion in Crisis
Juan E. Gilbert, PhD

I am writing these guidelines in response to the recent events that have impacted the Black community, specifically, the Black computing community. As the Department Chair of the Computer & Information Science & Engineering (CISE) Department at the University of Florida, I lead, one of, if not, the nation’s most diverse computing sciences (CS) department. We have the nation’s most Black CS faculty and PhD students. We are one of the top CS departments for the number of female faculty. As a researcher, I have had the honor of producing the nation’s most Black/African-American CS PhDs. I have also had the honor of hiring and promoting the most Black faculty in CS. My experiences span more than 20 years and those experiences are the foundation for these guidelines.

Continue reading.