Engineering Diversity

IN THE NEWS

Accurate integrated imaging and projection system for oral cancer diagnosis
Rebecca Richards-Kortum | January 19, 2023

Accurate integrated imaging and projection system for oral cancer diagnosis
Rebecca Richards-Kortum | January 19, 2023

Oral cancer is a globally prevalent disease with an astonishingly low five-year survival rate of less than 50%. A key factor for its poor prognosis is delayed diagnosis resulting in more late-stage oral cancers. At these later stages, treatment becomes less effective and harsher on the body. Hence, many scientists aim to develop and improve diagnostic techniques for the early detection of oral cancer. At present, the gold standard for the diagnosis of most oral cancers is biopsy of suspicious oral lesions and pathologic analysis of the extracted small amounts of tissue. However, it is extremely important that clinicians biopsy the areas within the abnormal lesion with the worst disease. Currently, the decision whether or not to perform a biopsy, and the optimal biopsy site, are based on clinical examination, which greatly depends upon the experience of the examining clinician. To help identify high-risk regions, clinicians can also use commercially available imaging techniques based on autofluorescence to detect abnormal tissue at the macroscopic level, although current autofluorescence technologies suffer from low specificity for neoplastic disease.

Continue reading.

University of Toronto scientists use machine learning to fast-track drug formulation development
Christine Allen | January 10, 2023

University of Toronto scientists use machine learning to fast-track drug formulation development
Christine Allen | January 10, 2023

Scientists at the University of Toronto have successfully tested the use of machine learning models to guide the design of long-acting injectable drug formulations. The potential for machine learning algorithms to accelerate drug formulation could reduce the time and cost associated with drug development, making promising new medicines available faster.

The study was published today in Nature Communications and is one of the first to apply machine learning techniques to the design of polymeric long-acting injectable drug formulations.

Continue reading.

Mechanism Behind Osteoarthritis Could Lead to New Treatments
Fabrisia Ambrosio | January 10, 2023

Mechanism Behind Osteoarthritis Could Lead to New Treatments
Fabrisia Ambrosio | January 10, 2023

Researchers in the United States and Japan have discovered a new mechanism that links age-related cartilage tissue stiffening with the repression of a key protein associated with longevity. These findings enhance the understanding of mechanisms that lead to the deterioration of joints that causes osteoarthritis, according to the authors of a new study, published January 10th in Nature Communications.

In the study, researchers showed that increased stiffening of the extracellular matrix – a network of proteins and other molecules that surround and support tissues in the body – led to a decrease in a so-called “longevity protein” called Klotho (α-Klotho) in knee cartilage brought about by epigenetic changes. This Klotho decrease then damaged the cells in healthy cartilage called chondrocytes. Conversely, exposing aged chondrocytes to a softer extracellular matrix restored the knee cartilage to a more youthful state.

Continue reading.

Harriet Nembhard named president of Harvey Mudd College
Harriet Nembhard | December 6, 2022

Harriet Nembhard named president of Harvey Mudd College
Harriet Nembhard | December 6, 2022

Harriet Nembhard, dean of the University of Iowa’s College of Engineering, has been named president of Harvey Mudd College, a liberal arts college specializing in science, engineering, and mathematics located in Claremont, California.

Nembhard, who joined Iowa in June 2020, will begin her new position July 1. The UI will conduct a national search for Nembhard’s replacement.

“I congratulate Dean Nembhard and wish her the best of luck in her new role,” says Executive Vice President and Provost Kevin Kregel. “Under her leadership, the College of Engineering has continued to build upon its exceptional research reputation while advancing equity and inclusion in STEM education. She leaves the college in a strong position moving forward.

Continue reading.

LaShanda Korley Appointed U.S. Science Envoy
LaShanda Korley | December 6, 2022

LaShanda Korley Appointed U.S. Science Envoy
LaShanda Korley | December 6, 2022

Esteemed engineer to travel the world to advance science and technology cooperation with U.S.

LaShanda Korley, Distinguished Professor of Materials Science and Engineering and Chemical and Biomolecular Engineering at the University of Delaware, has been appointed a U.S. Science Envoy for 2023. The announcement was made by the U.S. Department of State on Tuesday, Dec. 6.

Through the Science Envoy Program, eminent U.S. scientists and engineers leverage their expertise and networks to forge connections and identify opportunities for sustained international cooperation, championing innovation and demonstrating America’s scientific leadership and technical ingenuity.

Continue reading.

Finding the “Sweet Spot” for Indoor Humidity May Help to Reduce COVID-19 Transmission
Lydia Bourouiba | November 18, 2022

Finding the “Sweet Spot” for Indoor Humidity May Help to Reduce COVID-19 Transmission
Lydia Bourouiba | November 18, 2022

As friends and families are beginning to plan holiday gatherings, a new study found that raising the humidity level could be another mitigation method to reduce COVID-19. That sweet spot looks to be between 40% and 60% humidity.

Researchers from Massachusetts Institute of Technology (MIT) combined population-based COVID-19 data with meteorologic measurements from 121 countries collected between January and August 2020 (J R Soc Interface 2022;19[196]:20210865). Countries included had reported at least 50 COVID-19–related deaths, indicating at least one outbreak had occurred. The researchers processed the epidemiological data while accounting for bias, and developed a computational workflow to estimate indoor conditions based on outdoor weather data and standard indoor comfort conditions.

Continue reading.

Vanderbilt study finds that diabetes may hasten breast cancer tumor growth and stiffness
Cynthia Reinhart-King | November 18, 2022

Vanderbilt study finds that diabetes may hasten breast cancer tumor growth and stiffness
Cynthia Reinhart-King | November 18, 2022

While diabetes is already associated with an increased risk of developing breast cancer, a new Vanderbilt study published in Science Advances on November 18 indicates that presence of the disease may increase tumor growth and stiffness.

Researchers also found that diabetes treatments could reduce the tumor growth and stiffness to levels comparable with non-diabetic ones. The research was led by Cynthia Reinhart-King, Cornelius Vanderbilt Professor of Engineering and University Distinguished Professor. Vanderbilt Ph.D. student Wenjun Wang, a current member of Reinhart-King’s cellular mechanics lab, and Lauren Hapach, PhD’21, a former lab member, were co-authors.

Continue reading.

Are Covid-19 “comas” signs of a protective hibernation state?
Emery Brown | November 18, 2022

Are Covid-19 “comas” signs of a protective hibernation state?
Emery Brown | November 18, 2022

Scientists hypothesize that, as in a hibernating turtle, the brain under sedation and deprived of oxygen may assume a protective state.

Many Covid-19 patients who have been treated for weeks or months with mechanical ventilation have been slow to regain consciousness even after being taken off sedation. A new article in the Proceedings of the National Academy of Sciences offers the hypothesis that this peculiar response could be the effect of a hibernation-like state invoked by the brain to protect cells from injury when oxygen is scarce.

A very similar kind of state, characterized by the same signature change of brain rhythms, is not only observed in cardiac arrest patients treated by chilling their body temperature, a method called “hypothermia,” but also by the painted turtle, which has evolved a form of self-sedation to contend with long periods of oxygen deprivation, or “anoxia,” when it overwinters underwater.

Continue reading.

Old mice regain leg strength after antibody treatment, Stanford Medicine researchers find
Helen Blau | November 15, 2022

Old mice regain leg strength after antibody treatment, Stanford Medicine researchers find
Helen Blau | November 15, 2022

Muscle stem cells, the cells in muscle fibers that generate new muscle cells after injury or exercise, lose their potency with age. But a study by researchers at Stanford Medicine shows that old mice regain the leg muscle strength of younger animals after receiving an antibody treatment that targets a pathway mediated by a molecule called CD47.

The findings are surprising because CD47, billed as the “don’t eat me” molecule, is better known as a target for cancer immunotherapy than for muscle regeneration. It peppers the surface of many cancer cells, protecting them from immune cells that patrol the body to root out and engulf dysfunctional or abnormal cells. Now it seems old muscle stem cells may use a similar approach to avoid being culled by the immune system.

Continue reading.

Dimension Inx and Lurie Children’s Hospital of Chicago awarded joint NIH grant to expand fertility restoration options
Ramille Shah | November 10, 2022

Dimension Inx and Lurie Children’s Hospital of Chicago awarded joint NIH grant to expand fertility restoration options
Ramille Shah | November 10, 2022

Exploratory collaboration will focus on developing strategies using 3-D printed bioscaffolds to support the growth and maturation of ovarian follicles to produce fertilizable eggs

Newswise — Dimension Inx, a regenerative biomaterials company, and Ann & Robert H. Lurie Children’s Hospital of Chicago have been jointly awarded an NIH Exploratory/Developmental Research Grant. The grant focuses on uncovering a novel approach to in vitro growth and maturation (IVGM) of ovarian follicles. Together, Dimension Inx and Lurie Children’s will use the funding to further explore the development of a more accessible and affordable infertility preservation intervention, one particularly useful in the emerging field of oncofertility.

Infertility is a significant and growing global health problem, with estimates suggesting more than 186 million individuals live with infertility worldwide. While assistive reproductive technologies (ART) methods like IVF have been available for over four decades, these technologies remain largely inaccessible and unaffordable.

Continue reading.

Popular Pharmaceutical Target in Cells May Prove Even More Useful
Jin Zhang | October 26, 2022

Popular Pharmaceutical Target in Cells May Prove Even More Useful
Jin Zhang | October 26, 2022

Researchers at University of California San Diego have identified a new signaling process involving G protein-coupled receptors (GPCRs), a cellular target already exploited by hundreds of diverse drugs. The discovery, published in the October 26, 2022 issue of Nature, opens the possibility of new therapies, including for multiple forms of cancer.

GPCRs are the largest and most diverse group of membrane receptors in eukaryotes — cells containing a nucleus and other organelles. Residing on the cell’s surface, they act as an inbox for messages arriving in the form of sugars, proteins, lipids and peptides, and play myriad roles in body functions, including fundamentally in regulating communications between cells.

Continue reading.

What causes severe COVID symptoms? Research examines role of immune systems
Melody Swartz | October 20, 2022

What causes severe COVID symptoms? Research examines role of immune systems
Melody Swartz | October 20, 2022

UChicago study examines how autoantibodies could cause complications in some patients

Since the earliest months of the COVID-19 pandemic, physicians and scientists worldwide have been working to understand how exactly the virus makes us sick. That task, already complicated by COVID’s rapid spread, is made more challenging by some of its unusual, seemingly inexplicable symptoms, such as blood pressure dysregulation and blood clots.

Now, research from the University of Chicago’s Pritzker School of Molecular Engineering (PME) shows that the immune system may unintentionally contribute to the disease’s strangest symptoms.

Continue reading.

Katherine Pollard Elected to the National Academy of Medicine
Katherine Pollard | October 17, 2022

Katherine Pollard Elected to the National Academy of Medicine
Katherine Pollard | October 17, 2022

Gladstone Data Scientist Elected to the National Academy of Medicine

Data scientist and statistician Katie Pollard, PhD, director of the Gladstone Institute of Data Science and Biotechnology, has been elected to the National Academy of Medicine (NAM), one of the highest honors in health and medicine. Through its election process, the Academy recognizes individuals who have demonstrated outstanding professional achievement and commitment to service.

Pollard is perhaps best known for developing a novel statistical approach to identify human accelerated regions (HARs), which are stretches of DNA that rapidly changed when humans evolved from primate ancestors. Many of these regions of the human genome help determine when and where important genes—including those associated with diseases—are turned on or off.

Continue reading.

Audrey Bowden receives NIH funding to develop point-of-care detection of jaundice in newborns
Audrey Bowden | October 13, 2022

Audrey Bowden receives NIH funding to develop point-of-care detection of jaundice in newborns
Audrey Bowden | October 13, 2022

Audrey Bowden, Dorothy J. Wingfield Phillips Chancellor’s Faculty Fellow and associate professor of biomedical and electrical engineering, has won a grant from the National Institute of Biomedical Imaging and Bioengineering to develop a novel noninvasive smartphone-integrated device to provide accurate, point-of-care detection of jaundice in newborns of all skin tones.

Newborns have immature liver function that is inefficient at metabolizing bilirubin, a yellowish pigment that is made during the normal breakdown of red blood cells. Consequently, nearly 80 percent of preterm and 60 percent of term babies develop hyperbilirubinemia, a potentially fatal form of neonatal jaundice, within a week of their birth. The gold standard for detecting hyperbilirubinemia is the use of frequent blood tests to measure bilirubin levels, but this approach is expensive and painful and increases likelihood of infection.

Continue reading.

Tissue chip developments: what’s the 411?
Gordana Vunjak-Novakovic | October 4, 2022

Tissue chip developments: what’s the 411?
Gordana Vunjak-Novakovic | October 4, 2022

Tissue chips—tiny mimics of human organs, just millimeters in size—represent an alternative to animal models as a way to study disease or evaluate drugs. However, a major limitation of tissue chips is that they do not faithfully imitate tissue interactions, so it’s impossible to know how a treatment for liver disease, for example, might affect another organ, like the heart.

To improve this technology, NIBIB-funded researchers have developed an interlinked tissue chip system that can model four mature organs in their perspective environments simultaneously. These multi-organ tissue chips, which could be personalized to model individual patients, may represent a new way to evaluate the systemic effects of novel drugs.

Continue reading.

Gene Loss Enhances Metastasis and Cancer Progression
Shana Kelley | September 29, 2022

Gene Loss Enhances Metastasis and Cancer Progression
Shana Kelley | September 29, 2022

Investigators have discovered that the loss of the gene SLIT2 in circulating tumor cells regulates metastasis of prostate cancer tumors, according to a Northwestern Medicine study published in Science Advances.

Metastasis accounts for most cancer-related deaths, yet its underlying mechanisms have remained poorly understood despite recent advances in cancer treatments and care.

Continue reading.

Leading Tissue Regeneration Expert to Chair UVA’s Department of Biomedical Engineering
Shayn Peirce-Cottler | September 9, 2022

Leading Tissue Regeneration Expert to Chair UVA’s Department of Biomedical Engineering
Shayn Peirce-Cottler | September 9, 2022

Shayn Peirce-Cottler, PhD, an international leader in biomedical engineering and a University of Virginia faculty member since 2004, has been named chair of UVA’s Department of Biomedical Engineering. She succeeds Frederick H. Epstein, PhD, who has served as chair of the Department of Biomedical Engineering – a joint program of UVA’s School of Medicine and School of Engineering and Applied Science – since 2011. Epstein was named the School of Engineering’s associate dean for research earlier this year.

“With her long tenure at UVA, Dr. Peirce-Cottler has a deep understanding and appreciation for our talented, accomplished team in the Department of Biomedical Engineering,” said Melina R. Kibbe, MD, the dean of the School of Medicine and chief health affairs officer for UVA Health. “She is a nationally recognized outstanding scientist and educator and has been a shining leader within the department. I look forward to seeing how she builds on the department’s 55 years of innovation.” 

Continue reading.

Discovery points to new drug targets that could prevent cancer spread
Sylvia Plevritis | August 22, 2022

Discovery points to new drug targets that could prevent cancer spread
Sylvia Plevritis | August 22, 2022

Any cancer cell migrating from a tumor to set up shop elsewhere in the body will face a brutal attack from an immune system programmed to seek and destroy abnormal cells. But two recent studies from Stanford Medicine show that the hearty few that manage to infiltrate nearby lymph nodes carry out a stunning biological coup — convincing the body’s defense system to accept them as part of its own tissues. This savvy rebranding gives tumor cells a free pass to easily metastasize to any site in the body and significantly worsen cancer prognoses.

The studies, conducted in laboratory mice, human cells and human tissue samples from cancer patients, upend the idea that lymph nodes — often the first site of metastasis — are simply passive downstream harbors for circulating cancer cells that have broken loose from nearby tumors.

Continue reading.

New strategy for delivery of therapeutic proteins could help treat degenerative eye diseases
Molly Shoichet | August 18, 2022

New strategy for delivery of therapeutic proteins could help treat degenerative eye diseases
Molly Shoichet | August 18, 2022

A U of T Engineering research team has created a new platform that delivers multiple therapeutic proteins to the body, each at its own independently controlled rate. The innovation could help treat degenerative diseases such as age-related macular degeneration (AMD), the leading cause of vision loss for people over 50.

Unlike traditional drugs made of small molecules, therapeutic proteins are synthetic versions of larger biomolecules naturally present in the body. One example is the synthetic insulin used to treat diabetes. There are other proteins that can modulate the body’s own repair processes in ways that small-molecule drugs cannot.

Continue reading.

Professor Laurencin Publishes Breakthrough Report on Rotator Cuff Regeneration Treatment
Cato Laurencin | August 12, 2022

Professor Laurencin Publishes Breakthrough Report on Rotator Cuff Regeneration Treatment
Cato Laurencin | August 12, 2022

A new way to regenerate muscle could help repair the damaged shoulders of millions of people every year. The technique uses advanced materials to encourage muscle growth in rotator cuff muscles. Dr. Cato Laurencin and his team reported the findings in the Proceedings of the National Academy of Sciences (PNAS) August 8th issue.

Tears of the major tendons in the shoulder joint, commonly called the rotator cuff, are common injuries in adults. Advances in surgery have made ever better rotator cuff repairs possible. But failure rates with surgery can be high. Now, a team of researchers from the UConn School of Medicine led by Laurencin, a surgeon, engineer and scientist, reports that a graphene/polymer matrix embedded into shoulder muscle can prevent re-tear injuries.

Continue reading.

Scaling up cell imaging
Anne Carpenter | August 3, 2022

Scaling up cell imaging
Anne Carpenter | August 3, 2022

Scientists have learned a lot about human biology by looking at cells under a microscope, but they might not notice tiny differences between cells or even know what they’re looking for. Researchers at the Broad Institute of MIT and Harvard, in the laboratories of Anne Carpenter and Stuart Schreiber, first started developing cell painting 13 years ago to take cell imaging to the next level. The method, further advanced by Carpenter, now senior director of the Broad’s Imaging Platform and senior group leader Shantanu Singh, and colleagues, uses six colored dyes to stain eight different cell organelles. Machine learning models recognize subtle differences in the images—changes in cell morphology that might indicate disease or a drug or genetic perturbation—which allows researchers to predict the effects of a drug or mutation.

The Broad team has recently made strides in scaling up the method. They have spent the last several years building a consortium of drugmakers and academic institutions to create the world’s largest public cell painting database, which drug developers hope will help accelerate their search for promising drug candidates.

Continue reading.

Advances in Pesticide Screening Techniques
Shalini Prasad | July 29, 2022

Advances in Pesticide Screening Techniques
Shalini Prasad | July 29, 2022

Pesticides have become an integral part of the modern farming process due to their usefulness in preventing crop losses to pests, weeds and disease. With the United Nations “2030 Agenda for Sustainable Development” goals placing a renewed emphasis on sustainable farming technologies and environmental safety, demand is increasing for screening techniques that can detect and monitor the presence of excess pesticide residues in the environment.

Despite such demand, it is still relatively rare for pesticide testing to occur on-site during farming. For pesticide residues on crops and foodstuffs, it is most common for samples to be sent away to analytical laboratories for testing. This may give accurate results, but it is a time-consuming process that can become quite impractical for routine screening. At the other end of the scale, environmental soil and soil runoff samples are rarely tested at all.

Continue reading.

Controlling glaucoma: Eye drop therapy reaches posterior ocular tissues
Laura Ensign | July 22, 2022

Controlling glaucoma: Eye drop therapy reaches posterior ocular tissues
Laura Ensign | July 22, 2022

A novel eye drop under development may provide neuroprotection to the retinal ganglion cells (RGCs). An added plus is that only once-weekly dosing is required, according to Laura Ensign, PhD, who headed up the research.

Ensign holds the Marcella E. Woll Professorship in Ophthalmology and is an associate professor of ophthalmology and vice chair for research at the Wilmer Eye Institute, Johns Hopkins Medicine in Baltimore, Maryland. This work is being conducted in collaboration with Justin Hanes, PhD, who is the Lewis J. Ort Professor of Ophthalmology and director of the Center for Nanomedicine at the Johns Hopkins University School of Medicine, and Donald Zack, MD, PhD, the Guerrieri Professor of Genetic Engineering and Molecular Ophthalmology and codirector of the Center for Stem Cells and Ocular Regenerative Medicine at the Wilmer Eye Institute.

Antiglaucoma eye drops are the mainstay of treatment for the disease, and they successfully and significantly lower the IOP. However, despite achieving a reduction of the IOP, glaucoma can continue to progress and threaten vision in many patients diagnosed with the disease. A therapy that protects the RGCs from damage was just a dream until recently. This new therapy developed by the Wilmer Eye Institute team is in the process of becoming a reality.

Continue reading.

Scientists find molecular clues behind acute and chronic phases of traumatic brain injury
Sarah Stabenfeldt | July 22, 2022

Scientists find molecular clues behind acute and chronic phases of traumatic brain injury
Sarah Stabenfeldt | July 22, 2022

New research led by scientists at Arizona State University has revealed some of the first detailed molecular clues associated with one of the leading causes of death and disability, a condition known as traumatic brain injury (TBI).

TBI is a growing public health concern, affecting more than 1.7 million Americans at an estimated annual cost of $76.5 billion dollars. It is a leading cause of death and disability for children and young adults in industrialized countries, and people who experience TBI are more likely to develop severe, long-term cognitive and behavioral deficits.

Continue reading.

How different cancer cells respond to drug-delivering nanoparticles
Paula Hammond | July 21, 2022

How different cancer cells respond to drug-delivering nanoparticles
Paula Hammond | July 21, 2022

The findings of a large-scale screen could help researchers design nanoparticles that target specific types of cancer.

Using nanoparticles to deliver cancer drugs offers a way to hit tumors with large doses of drugs while avoiding the harmful side effects that often come with chemotherapy. However, so far, only a handful of nanoparticle-based cancer drugs have been FDA-approved.

A new study from MIT and Broad Institute of MIT and Harvard researchers may help to overcome some of the obstacles to the development of nanoparticle-based drugs. The team’s analysis of the interactions between 35 different types of nanoparticles and nearly 500 types of cancer cells revealed thousands of biological traits that influence whether those cells take up different types of nanoparticles.

Continue reading.

Suffocating from Medical Bias
Gilda Barabino & Harriet Nembhard | July 15, 2022

Suffocating from Medical Bias
Gilda Barabino & Harriet Nembhard | July 15, 2022

The United States is in the midst of a public health crisis, reeling from two serious pandemics: COVID-19 and systemic racism. Everyone is familiar with the impact of the virus. The categorization of racism as a pandemic may seem less obvious, but when viewed through the lens of systems engineering, racism in the American health care system can be seen to contain tightly linked problems of medicine, technology, design, leadership, and ethics. The intersections are myriad, bound in racial disparities that pervade all aspects of life, including such basic functions as the ability to breathe.

For Black people and other racially minoritized groups, the health care system—which should provide equitable treatment and care—is tainted by disparate access, poor quality of care, unequal outcomes, and distrust between individuals and health care providers. The extent to which racial biases lead to health care disparities is influenced by demographics; environmental, social, and economic conditions; and policies and practices that pervade all aspects of life.

Continue reading.

Ameer Wins 2022 Innovation Commercialization Award
Guillermo Ameer | July 13, 2022

Ameer Wins 2022 Innovation Commercialization Award
Guillermo Ameer | July 13, 2022

The award recognizes the application of tissue engineering and regenerative medicine that benefits patients

Northwestern Engineering’s Guillermo A. Ameer was honored with the 2022 Innovation/Commercialization Award by the Tissue Engineering and Regenerative Medicine International Society-Americas (TERMIS-AM).

The award recognizes the application of tissue engineering and regenerative medicine in the production of a product or technology that ultimately will benefit patients. The award can be presented for an existing product or for a newly developed product that has been launched in the last five years, or for a technology launched in the last five years that can facilitate commercialization of a product.

Continue reading.

Microparticles could be used to deliver “self-boosting” vaccines
Ana Jaklenec | July 13, 2022

Microparticles could be used to deliver “self-boosting” vaccines
Ana Jaklenec | July 13, 2022

With particles that release their payloads at different times, one injection could provide multiple vaccine doses.

Most vaccines, from measles to Covid-19, require a series of multiple shots before the recipient is considered fully vaccinated. To make that easier to achieve, MIT researchers have developed microparticles that can be tuned to deliver their payload at different time points, which could be used to create “self-boosting” vaccines.

In a new study, the researchers describe how these particles degrade over time, and how they can be tuned to release their contents at different time points. The study also offers insights into how the contents can be protected from losing their stability as they wait to be released.

Continue reading.

When it comes to darker skin, pulse oximeters fall short
Kimani Toussaint | July 11, 2022

When it comes to darker skin, pulse oximeters fall short
Kimani Toussaint | July 11, 2022

Over the past two years, the pulse oximeter has become a crucial tool for tracking the health of COVID-19 patients.

The small device clips onto a finger and measures the amount of oxygen in a patient’s blood. But a growing body of evidence shows the device can be inaccurate when measuring oxygen levels in people with dark skin tones.

A study published on Monday only adds to this concern.

Researchers analyzing pre-pandemic health data also find those measurements resulted in patients of color receiving less supplemental oxygen than white patients did.

Continue reading.

Experts Study Marine Mammals To Learn About Human Hearing
Barbara Shinn-Cunningham | June 30, 2022

Experts Study Marine Mammals To Learn About Human Hearing
Barbara Shinn-Cunningham | June 30, 2022

Many hearing loss patients have the same complaint: They have trouble following conversations in a noisy space. Carnegie Mellon University’s Barbara Shinn-Cunningham has spent her career conducting research to better understand this problem and how it affects people at cocktail parties, coffee shops and grocery stores.

Now, along with a team of researchers from six universities, Shinn-Cunningham, the director of CMU’s Neuroscience Institute (NI) and the George A. and Helen Dunham Cowan Professor of Auditory Neuroscience, is looking for answers in an unexpected place. The researchers will conduct noninvasive experiments on free-swimming dolphins and sea lions.

Continue reading.

Breast Cancer’s Spread Accelerates During Sleep
Sunitha Nagrath | June 28, 2022

Breast Cancer’s Spread Accelerates During Sleep
Sunitha Nagrath | June 28, 2022

Breast cancer metastases spread far more efficiently during sleep, according to a Swiss study.

While it has been assumed that circulating tumor cells (CTCs) are constantly shedding from growing tumors, or as a result of mechanical insults, there’s a “striking and unexpected pattern of CTC generation dynamics in both patients with breast cancer and mouse models, highlighting that most spontaneous CTC intravasation events occur during sleep,” wrote Nicola Aceto, PhD, of the Swiss Federal Institute of Technology in Zurich, and colleagues.

Furthermore, CTCs are more prone to metastasize during a body’s resting phase, while those generated during a body’s active phase are not, they noted in Nature.

Continue reading.

Tissue model reveals key players in liver regeneration
Sangeeta Bhatia | June 27, 2022

Tissue model reveals key players in liver regeneration
Sangeeta Bhatia | June 27, 2022

By tracing the steps of liver regrowth, MIT engineers hope to harness the liver’s regenerative abilities to help treat chronic disease.

The human liver has amazing regeneration capabilities: Even if up to 70 percent of it is removed, the remaining tissue can regrow a full-sized liver within months.

Taking advantage of this regenerative capability could give doctors many more options for treating chronic liver disease. MIT engineers have now taken a step toward that goal, by creating a new liver tissue model that allows them to trace the steps involved in liver regeneration more precisely than has been possible before.

The new model can yield information that couldn’t be gleaned from studies of mice or other animals, whose biology is not identical to that of humans, says Sangeeta Bhatia, the leader of the research team.

Continue reading.

Nanomaterials That Provide Imaging While Delivering Medication
Kytai Nguyen | June 24, 2022

Nanomaterials That Provide Imaging While Delivering Medication
Kytai Nguyen | June 24, 2022

A University of Texas at Arlington bioengineer is leading a project that will develop biodegradable nanomaterials that will take pictures and deliver medicine to combat peripheral arterial disease (PAD).

Kytai Nguyen, a UT Arlington bioengineering professor, is the principal investigator in the four-year, $2.1 million National Institutes of Health (NIH) grant. She’s collaborating with Jian Yang, a Penn State University bioengineering professor and former UTA faculty member, and Ralph Mason, a professor of radiology at UT Southwestern.

“What’s important in this project is that the technology carries fluorescent and ultrasound imaging capabilities, which will provide patients and doctors with more detailed information,” Nguyen said. “It also gives patients more targeted medicine, making it more efficient.

Continue reading.

Dr. Cato T. Laurencin Elected to the European Academy of Sciences
Cato Laurencin | June 16, 2022

Dr. Cato T. Laurencin Elected to the European Academy of Sciences
Cato Laurencin | June 16, 2022

The prestigious European Academy of Sciences has recognized UConn’s Dr. Cato T. Laurencin for his visionary and pioneering work in the field of regenerative engineering

In recognition of his pioneering work in the field of regenerative engineering, UConn professor Dr. Cato T. Laurencin has been elected to the prestigious European Academy of Sciences (EURASC).

“It’s very gratifying that a number of different parts of the world consider the work we are doing to be breakthrough,” Laurencin says. “The world is embracing the concepts behind regenerative engineering and has come to realize the importance of this field.”

Continue reading.

Lydia Contreras Named New Vice Provost for Faculty Diversity
Lydia Contreras | June 15, 2022

Lydia Contreras Named New Vice Provost for Faculty Diversity
Lydia Contreras | June 15, 2022

The University of Texas at Austin has named Lydia Contreras as its new vice provost for faculty diversity, equity and inclusivity, effective immediately. Contreras, who currently holds the Jim and Barbara Miller Endowed Faculty Fellowship in Chemical Engineering, has served for the past two years as the managing director of diversity in the Office of the Executive Vice President and Provost.

She succeeds Edmund T. Gordon, who will serve as the inaugural executive director for the university’s Contextualization and Commemoration Initiative.

Contreras’ primary responsibility will be to lead the advancement of the Strategic Plan for Faculty Diversity, Equity, and Inclusivity in alignment with UT’s new plan for an equitable and inclusive campus, You Belong Here.

Continue reading.

Nanoparticle sensor can distinguish between viral and bacterial pneumonia
Sangeeta Bhatia | June 13, 2022

Nanoparticle sensor can distinguish between viral and bacterial pneumonia
Sangeeta Bhatia | June 13, 2022

Many different types of bacteria and viruses can cause pneumonia, but there is no easy way to determine which microbe is causing a particular patient’s illness. This uncertainty makes it harder for doctors to choose effective treatments because the antibiotics commonly used to treat bacterial pneumonia won’t help patients with viral pneumonia. In addition, limiting the use of antibiotics is an important step toward curbing antibiotic resistance.

MIT researchers have now designed a sensor that can distinguish between viral and bacterial pneumonia infections, which they hope will help doctors to choose the appropriate treatment.

Continue reading.

Engineers develop nanoparticles that cross the blood-brain barrier
Paula Hammond | June 1, 2022

Engineers develop nanoparticles that cross the blood-brain barrier
Paula Hammond | June 1, 2022

There are currently few good treatment options for glioblastoma, an aggressive type of brain cancer with a high fatality rate. One reason that the disease is so difficult to treat is that most chemotherapy drugs can’t penetrate the blood vessels that surround the brain.

A team of MIT researchers is now developing drug-carrying nanoparticles that appear to get into the brain more efficiently than drugs given on their own. Using a human tissue model they designed, which accurately replicates the blood-brain barrier, the researchers showed that the particles could get into tumors and kill glioblastoma cells.

Continue reading.

Western Engineering researcher and alumnus honoured with Ontario Professional Engineers Award
Kibret Mequanint | May 24, 2022

Western Engineering researcher and alumnus honoured with Ontario Professional Engineers Award
Kibret Mequanint | May 24, 2022

The Ontario Society of Professional Engineers (OSPE) and Professional Engineers Ontario (PEO) recently announced its 2022 Ontario Professional Engineers Awards (OPEA) recipients, recognizing industry innovators and business leaders for their excellence and achievement in engineering.

Western Engineering researcher, Kibret Mequanint, a professor in the department of Chemical and Biochemical Engineering was awarded the Engineering Medal for Research and Development for developing applications that extend engineering or natural sciences. Alumnus and president of Neegan Burnside Ltd., Cory Jones, P.Eng., BESc’97, earned the Engineering Excellence Medal, recognizing overall excellence in the practice of engineering.

Both recipients will be honoured at the OPEA’s Award Gala on November 18, 2022.

Continue reading.

New Western innovation gels engineering with medicine
Kibret Mequanint | May 20, 2022

New Western innovation gels engineering with medicine
Kibret Mequanint | May 20, 2022

Game-changing ‘bio-glue’ could mean end to surgical sutures, staples

Western biomaterials expert Kibret Mequanint – in partnership with Malcolm Xing from University of Manitoba – has developed the first-ever hydrophobic (water-hating) fluid, which displaces body fluids surrounding an injury allowing for near-instantaneous gelling, sealing and healing of injured tissue.

“Tissue adhesives that can perform in the presence of blood, water and other proteins in the body are the holy grail for instant wound closure and hemostasis, especially when time is critical in rescue operations and emergency responses,” said Mequanint, a Western chemical and biochemical engineering professor.

Continue reading.

Ameer Wins 2022 Bioactive Materials Lifetime Achievement Award
Guillermo Ameer | May 16, 2022

Ameer Wins 2022 Bioactive Materials Lifetime Achievement Award
Guillermo Ameer | May 16, 2022

Northwestern Engineering’s Guillermo A. Ameer has been named the 2022 Bioactive Materials Lifetime Achievement Award winner by the Bioactive Materials academic journal.

Established in 2021, the annual Bioactive Materials Lifetime Achievement Award recognizes excellence in research and development in the field of bioactive materials. The award is presented to a person judged to have demonstrated excellence and leadership in bioactive materials, including basic science and translation to practice.

Continue reading.

Study estimates effectiveness of 2-dose and 3-dose mRNA vaccination against Omicron
Delphine Dean | May 12, 2022

Study estimates effectiveness of 2-dose and 3-dose mRNA vaccination against Omicron
Delphine Dean | May 12, 2022

In a recent study posted to the medRxiv* preprint server, researchers estimated the efficacy of two-dose and three-dose regimens of two messenger ribonucleic acid (mRNA) vaccines: Moderna’s mRNA-1273 and Pfizer-BioNTech’s BNT162b2 against coronavirus disease 2019 (COVID-19) caused due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant.

Omicron (B.1.1529) has demonstrated higher infectivity compared to other SARS-CoV-2 variants. In addition, studies have reported lower Omicron neutralization by the existing COVID-19 vaccines. Despite this, it is not clear just how much protection the COVID-19 vaccine confers against Omicron infections.

Continue reading.

Expanding the Oval and Opening Doors: The Inauguration of Olin President Gilda Barabino
Gilda Barabino | May 9, 2022

Expanding the Oval and Opening Doors: The Inauguration of Olin President Gilda Barabino
Gilda Barabino | May 9, 2022

On May 5, 2022, Olin College celebrated a milestone event two years in the making—the long-awaited and much celebrated inauguration of its second president and first Black woman president, Dr. Gilda A. Barabino.

Joined by delegates, trustees, students, staff, faculty, alumni, parents and guests from far and wide, the Olin Community gathered on a perfect New England spring day to hear personal stories and words of wisdom from honored guests, and to witness to President Barabino’s formal investiture ceremony.

Continue reading.

New Vice Dean for Research and Graduate Education
Shelly Sakiyama-Elbert | May 6, 2022

New Vice Dean for Research and Graduate Education
Shelly Sakiyama-Elbert | May 6, 2022

On July 1, Shelly Sakiyama-Elbert, PhD, will join UW Medicine as the new vice dean for Research and Graduate Education. She succeeds John Slattery, PhD, who is retiring after holding the position since 2005. Her husband, Don Elbert, PhD, will also join UW Medicine as an associate professor in the Department of Neurology.

“I am delighted that Shelly Sakiyama-Elbert has accepted the position of vice dean for Research and Graduate Education,” says Paul Ramsey, MD, CEO of UW Medicine. “She was selected after a national search for her outstanding skills in leading interdisciplinary and translational research and supporting the career development of faculty, staff, trainees and students. I also want to thank John Slattery for his long service and great success in building an internationally renowned research community at UW Medicine to advance biomedical science.”

Continue reading.

Alyssa Panitch Chosen as Chair of Coulter BME
Alyssa Panitch | May 3, 2022

Alyssa Panitch Chosen as Chair of Coulter BME
Alyssa Panitch | May 3, 2022

Alyssa Panitch, Edward Teller Professor in the Department of Biomedical Engineering at the University of California, Davis, has been selected as the new chair of the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

Panitch currently serves as executive associate dean of academic personnel and planning in the College of Engineering at UC Davis. The position oversees the merit and promotion process and all matters related to faculty and academic affairs, including faculty and academic personnel hiring.

Continue reading.

Sweat Sensor Makes Big Strides in Detecting Infection Indicators
Shalini Prasad | April 29, 2022

Sweat Sensor Makes Big Strides in Detecting Infection Indicators
Shalini Prasad | April 29, 2022

University of Texas at Dallas bioengineers in collaboration with EnLiSense LLC have designed a wearable sensor that can detect two key biomarkers of infection in human sweat, a significant step toward making it possible for users to receive early warnings of infections such as COVID-19 and influenza.

The Erik Jonsson School of Engineering and Computer Science researchers’ study, published online March 3 in Advanced Materials Technologies, demonstrates that the sweat sensor can identify the biomarkers interferon-gamma-inducible protein (IP-10) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Elevated levels of IP-10 and TRAIL indicate what is known as a cytokine storm, a surge of pro-inflammatory immune proteins generated in the most serious infections.

Continue reading.

Raphael C. Lee elected to American Academy of Arts and Sciences in 2022
Raphael Lee | April 29, 2022

Raphael C. Lee elected to American Academy of Arts and Sciences in 2022
Raphael Lee | April 29, 2022

Seven members of the University of Chicago faculty have been elected to the American Academy of Arts and Sciences, one of the nation’s oldest and most prestigious honorary societies.

They include Profs. Christopher R. Berry, Raphael C. Lee, Peter B. Littlewood, Richard Neer, Sianne Ngai and Esteban Rossi-Hansberg, and Prof. Emerita Wadad Kadi.

These scholars have made breakthroughs in fields ranging from condensed matter physics to biomedical engineering and the aesthetics of capitalism. They join the 2022 class of 261 individuals, announced April 28, which includes artists, scholars, scientists, and leaders in the public, nonprofit and private sectors.

In addition to Rossi-Hansberg, AM’98, PhD’02, 13 UChicago alumni were also elected as part of this year’s class.

Continue reading.

Plug-and-play organ-on-a-chip can be customized to the patient
Gordana Vunjak-Novakovic | April 27, 2022

Plug-and-play organ-on-a-chip can be customized to the patient
Gordana Vunjak-Novakovic | April 27, 2022

Engineered tissues have become a critical component for modeling diseases and testing the efficacy and safety of drugs in a human context. A major challenge for researchers has been how to model body functions and systemic diseases with multiple engineered tissues that can physiologically communicate — just like they do in the body. However, it is essential to provide each engineered tissue with its own environment so that the specific tissue phenotypes can be maintained for weeks to months, as required for biological and biomedical studies. Making the challenge even more complex is the necessity of linking the tissue modules together to facilitate their physiological communication, which is required for modeling conditions that involve more than one organ system, without sacrificing the individual engineered tissue environments.

Novel plug-and-play multi-organ chip, customized to the patient

Up to now, no one has been able to meet both conditions. Today, a team of researchers from Columbia Engineering and Columbia University Irving Medical Center reports that they have developed a model of human physiology in the form of a multi-organ chip consisting of engineered human heart, bone, liver, and skin that are linked by vascular flow with circulating immune cells, to allow recapitulation of interdependent organ functions. The researchers have essentially created a plug-and-play multi-organ chip, which is the size of a microscope slide, that can be customized to the patient. Because disease progression and responses to treatment vary greatly from one person to another, such a chip will eventually enable personalized optimization of therapy for each patient. The study is the cover story of the April 2022 issue of Nature Biomedical Engineering.

Continue reading.

Can a blood test help diagnose skin cancer?
Sunitha Nagrath | April 20, 2022

Can a blood test help diagnose skin cancer?
Sunitha Nagrath | April 20, 2022

New research in Advanced NanoBiomed Research indicates that testing an individual’s blood can reveal the presence of circulating melanoma cells. Such tests may allow patients to forego invasive skin biopsies to determine whether they have skin cancer.

The test uses what’s called the Melanoma-specific OncoBean platform conjugated with melanoma-specific antibodies. Investigators at the University of Michigan showed that the test can be used not only to diagnose melanoma but also to evaluate whether all cancer cells have been successfully removed after skin cancer surgery.

Continue reading.

Tumors partially destroyed with sound don’t come back
Zhen Xu | April 18, 2022

Tumors partially destroyed with sound don’t come back
Zhen Xu | April 18, 2022

Noninvasive sound technology developed at the University of Michigan breaks down liver tumors in rats, kills cancer cells and spurs the immune system to prevent further spread—an advance that could lead to improved cancer outcomes in humans.

By destroying only 50% to 75% of liver tumor volume, the rats’ immune systems were able to clear away the rest, with no evidence of recurrence or metastases in more than 80% of animals.

“Even if we don’t target the entire tumor, we can still cause the tumor to regress and also reduce the risk of future metastasis,” said Zhen Xu, professor of biomedical engineering at U-M and corresponding author of the study in Cancers.

Continue reading.

Innovative Therapy that “Tricks” and Destroys Cancer Cells Advances to Clinical Trial
Kathleen Schmainda | April 8, 2022

Innovative Therapy that “Tricks” and Destroys Cancer Cells Advances to Clinical Trial
Kathleen Schmainda | April 8, 2022

A novel therapy studied at the Medical College of Wisconsin (MCW) Cancer Center has led to a clinical trial for the treatment of glioblastoma, a rare and aggressive form of brain cancer, yet the most common primary brain tumor in adults.

Despite decades of research globally, only incremental gains have been made to extend or enhance quality of life for patients with glioblastoma. Treatment options are limited and typically include a combination of surgery, radiation therapy, and chemotherapy. Now, a new clinical study open at Froedtert & the Medical College of Wisconsin will evaluate an alternative treatment that is administered orally.

Continue reading.

Study reveals the dynamics of human milk production
Bonnie Berger | April 5, 2022

Study reveals the dynamics of human milk production
Bonnie Berger | April 5, 2022

For the first time, MIT researchers have performed a large-scale, high-resolution study of the cells in breast milk, allowing them to track how these cells change over time in nursing mothers.

By analyzing human breast milk produced between three days and nearly two years after childbirth, the researchers were able to identify a variety of changes in gene expression in mammary gland cells. Some of these changes were linked to factors such as hormone levels, illness of the mother or baby, the mother starting birth control, and the baby starting daycare.

“We were able to take this really long view of lactation that other studies haven’t really done, and we showed that milk does change over the entire course of lactation, even after years of milk production,” says Brittany Goods, a former MIT postdoc who is now an assistant professor of engineering at Dartmouth College, and one of the senior authors of the study.

Continue reading.

Human Factors Drive Radiology Error Rates
Elizabeth Krupinski | March 25, 2022

Human Factors Drive Radiology Error Rates
Elizabeth Krupinski | March 25, 2022

In 1949, radiologist Leo Henry Garland, MD, former RSNA president, published his first of several articles on errors in radiology. Among his findings, Dr. Garland discovered that experienced radiologists would miss important findings in approximately 30% of chest radiographs positive for radiologic evidence of disease. The ensuing decades saw the development of contrast agents, the introduction of CT and MRI, and other major advances.

But despite these technological advances, along with vast gains in knowledge about human biology and disease processes, error rates in radiology have remained largely unchanged from Dr. Garland’s time, according to Michael A. Bruno, MD, vice chair for quality and safety, and chief of emergency radiology at Penn State University.

Continue reading.

Injectable electrodes could prevent deadly heart arrhythmias
Elizabeth Cosgriff-Hernandez | March 25, 2022

Injectable electrodes could prevent deadly heart arrhythmias
Elizabeth Cosgriff-Hernandez | March 25, 2022

Heart attacks and strokes triggered by electrical misfiring in the heart are among the biggest killers on the planet. Now, researchers have created a “liquid wire” that, when injected into pig hearts, can guide the organs to a normal rhythm.

The results, presented here this week at a meeting of the American Chemical Society, are “impressive and really cool,” says Thomas Mansell, a biomolecular engineer at Iowa State University who was not involved with the work. “It’s an exciting study,” agrees Usha Tedrow, a cardiac electrophysiologist at Harvard Medical School, also not involved in the work. If the findings translate to people, she says, it could save thousands of lives each year.

Continue reading.

In animal study, implant churns out CAR-T cells to combat cancer
Frances Ligler | March 24, 2022

In animal study, implant churns out CAR-T cells to combat cancer
Frances Ligler | March 24, 2022

Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have developed an implantable biotechnology that produces and releases CAR-T cells for attacking cancerous tumors. In a proof-of-concept study involving lymphoma in mice, the researchers found that treatment with the implants was faster and more effective than conventional CAR-T cell cancer treatment.

T cells are part of the immune system, tasked with identifying and destroying cells in the body that have become infected with an invading pathogen. CAR-T cells are T cells that have been engineered to identify cancer cells and destroy them. CAR-T cells are already in clinical use for treating lymphomas, and there are many clinical trials under way focused on using CAR-T cell treatments against other forms of cancer.

Continue reading.

Nanotechnology helps soybean growers and the environment
Cristina Sabliov | March 4, 2022

Nanotechnology helps soybean growers and the environment
Cristina Sabliov | March 4, 2022

Louisiana farmers rely on herbicides, pesticides and fungicides to protect their crops against weeds, insects and diseases. Even though most farmers try to be good stewards of the environment, some of those chemicals inevitably end up in waterways, or elsewhere, instead of benefiting the plants. To address this problem, LSU Professor Cristina Sabliov is working on technologies for more targeted delivery of agrochemicals to crops, to prevent waste—a cost issue for farmers—while protecting plants, yields and the environment.

Sabliov develops nanoparticles that are smaller than the eye can see—about a thousand times smaller than the thickness of a human hair. These tiny delivery systems can attach to specific parts of a plant, such as the root or the leaves, and deposit a small but significant payload to be released either immediately or over time.

Continue reading.

‘Tuning’ gel-forming protein molecules to boost their versatility for biomedical applications
Jin Kim Montclare | February 16, 2022

‘Tuning’ gel-forming protein molecules to boost their versatility for biomedical applications
Jin Kim Montclare | February 16, 2022

Self-assembling protein molecules are versatile materials for medical applications because their ability to form gels can be accelerated or retarded by variations in pH, as well as changes in temperature or ionic strength. These biomaterials, responsive to physiological conditions, can therefore be easily adapted for applications where their effectiveness depends on gelation kinetics, such as how quickly and under what stimuli they form gels.

Understanding gelation kinetics for protein hydrogels is important for assessing their utility in medical applications and in the future of biomaterials. For example, fast-gelling systems are clinically useful for in situ gelation for the delivery of drugs or genetic material to target cells or anatomic regions, while slower-gelling systems are applicable for tissue engineering because of their ability to maintain cell viability and their propensity to maintain homogeneity.

Continue reading.

Size matters in particle treatments of traumatic injuries
Paula Hammond | February 16, 2022

Size matters in particle treatments of traumatic injuries
Paula Hammond | February 16, 2022

Traumatic injuries are the leading cause of death in the U.S. among people 45 and under, and such injuries account for more than 3 million deaths per year worldwide. To reduce the death toll of such injuries, many researchers are working on injectable nanoparticles that can home in on the site of an internal injury and attract cells that help to stop the bleeding until the patient can reach a hospital for further treatment.

While some of these particles have shown promise in animal studies, none have been tested in human patients yet. One reason for that is a lack of information regarding the mechanism of action and potential safety of such particles. To shed more light on those factors, MIT chemical engineers have now performed the first systematic study of how different-sized polymer nanoparticles circulate in the body and interact with platelets, the cells that promote blood clotting.

Continue reading.

Nola Hylton, PhD Inducted into the National Academy of Engineering
Nola Hylton | February 14, 2022

Nola Hylton, PhD Inducted into the National Academy of Engineering
Nola Hylton | February 14, 2022

The UC San Francisco Department of Radiology and Biomedical Imaging is pleased to announce that Nola Hylton, PhD has been inducted into the National Academy of Engineering (NAE), Class of 2022. Election to the NAE is among the highest professional distinctions accorded to an engineer.

Dr. Hylton is a professor in residence at UCSF Radiology and director of the Breast Imaging Research Group. Dr. Hylton’s impressive accomplishments include being an internationally known leader and recognized authority in the field of breast MRI for over 20 years. Election of new NAE members is the culmination of a yearlong process. A ballot is set in December with the final vote for membership during January. Dr. Hylton was elected to the NAE based on the following.

Continue reading.

Rena Bizios elected to National Academy of Engineering
Rena Bizios | February 14, 2022

Rena Bizios elected to National Academy of Engineering
Rena Bizios | February 14, 2022

Rena Bizios, Lutcher Brown Endowed Chair Professor in the Department of Biomedical Engineering, was recently elected to the National Academy of Engineering (NAE) as part of the 2022 induction class.

Election to the NAE is one of the foremost professional accomplishments in the field and is reserved for those who demonstrate significant contributions to the engineering literature and to “the pioneering of new and developing fields of technology, making major advancements in traditional fields of engineering, or developing/implementing innovative approaches to engineering education”. Professor Bizios was recognized for her “contributions to the theory and applications of cellular tissue engineering, cell/biomaterial interactions, and surface modification biomaterials.

Continue reading.

Research advances technology of AI assistance for anesthesiologists
Emery Brown | February 14, 2022

Research advances technology of AI assistance for anesthesiologists
Emery Brown | February 14, 2022

A new study by researchers at MIT and Massachusetts General Hospital (MGH) suggests the day may be approaching when advanced artificial intelligence systems could assist anesthesiologists in the operating room.

In a special edition of Artificial Intelligence in Medicine, the team of neuroscientists, engineers, and physicians demonstrated a machine learning algorithm for continuously automating dosing of the anesthetic drug propofol. Using an application of deep reinforcement learning, in which the software’s neural networks simultaneously learned how its dosing choices maintain unconsciousness and how to critique the efficacy of its own actions, the algorithm outperformed more traditional software in sophisticated, physiology-based simulations of patients. It also closely matched the performance of real anesthesiologists when showing what it would do to maintain unconsciousness given recorded data from nine real surgeries.

Continue reading.

New tool harnesses immune cells from tumors to effectively fight cancer
Shana Kelley | January 28, 2022

New tool harnesses immune cells from tumors to effectively fight cancer
Shana Kelley | January 28, 2022

Northwestern scientists have developed a new tool to harness immune cells from tumors to fight cancer rapidly and effectively, published in the journal Nature Biomedical Engineering.

Their findings showed a dramatic shrinkage in tumors in mice compared to traditional cell therapy methods. With a novel microfluidic device that could be 3D printed, the team multiplied, sorted through and harvested hundreds of millions of cells, recovering 400 percent more of the tumor-eating cells than current approaches.

Continue reading.

Guillermo Ameer Awarded the Technology Innovation and Development Award
Guillermo Ameer | January 26, 2022

Guillermo Ameer Awarded the Technology Innovation and Development Award
Guillermo Ameer | January 26, 2022

Northwestern Engineering’s Guillermo A. Ameer, Daniel Hale Williams Professor of Biomedical Engineering at the McCormick School of Engineering and Surgery at the Feinberg School of Medicine, has been given the the 2022 Technology Innovation and Development Award by the Society For Biomaterials.

Continue reading.

Achilefu recruited to lead new Department of Biomedical Engineering
Sam Achilefu | January 26, 2022

Achilefu recruited to lead new Department of Biomedical Engineering
Sam Achilefu | January 26, 2022

Molecular imaging expert Samuel Achilefu, Ph.D., will join UT Southwestern Feb. 1 as the first Chair of a new Department of Biomedical Engineering. Dr. Achilefu was recruited to UTSW from the Mallinckrodt Institute of Radiology at Washington University School of Medicine in St. Louis.

He worked at Washington University for more than 20 years, most recently as a Professor of Radiology, Medicine, Biomedical Engineering, and Biochemistry & Molecular Biophysics. He also served as Chief of the Optical Radiology Laboratory, Vice Chair for Innovation and Entrepreneurship at the Mallinckrodt Institute of Radiology, and co-leader of the Oncologic Imaging Program of the Siteman Cancer Center. Recently, Dr. Achilefu was elected to the National Academy of Medicine, considered one of the highest honors in the fields of health and medicine.

Continue reading.

Researchers pilot ‘itty bitty’ device for earlier ovarian cancer detection
Jennifer Barton | January 18, 2022

Researchers pilot ‘itty bitty’ device for earlier ovarian cancer detection
Jennifer Barton | January 18, 2022

Due to a lack of effective screening and diagnostic tools, more than three-fourths of ovarian cancer cases are not found until the cancer is in an advanced stage. As a result, fewer than half of all women with ovarian cancer survive more than five years after diagnosis.

Jennifer Barton, director of the University of Arizona BIO5 Institute and Thomas R. Brown Distinguished Chair in Biomedical Engineering, has spent years developing a device small enough to image the fallopian tubes – narrow ducts connecting the uterus to the ovaries – and search for signs of early-stage cancer. Dr. John Heusinkveld has now used the new imaging device in study participants for the first time, as part of a pilot human trial.

Continue reading.

Nanotherapy offers new hope for the treatment of Type 1 diabetes
Guillermo Ameer | January 17, 2022

Nanotherapy offers new hope for the treatment of Type 1 diabetes
Guillermo Ameer | January 17, 2022

Individuals living with Type 1 diabetes must carefully follow prescribed insulin regimens every day, receiving injections of the hormone via syringe, insulin pump or some other device. And without viable long-term treatments, this course of treatment is a lifelong sentence.

Pancreatic islets control insulin production when blood sugar levels change, and in Type 1 diabetes, the body’s immune system attacks and destroys such insulin-producing cells. Islet transplantation has emerged over the past few decades as a potential cure for Type 1 diabetes. With healthy transplanted islets, Type 1 diabetes patients may no longer need insulin injections, but transplantation efforts have faced setbacks as the immune system continues to eventually reject new islets. Current immunosuppressive drugs offer inadequate protection for transplanted cells and tissues and are plagued by undesirable side effects.

Continue reading.

Accomplished biomedical engineer, academic leader named Brown School of Engineering dean
Tejal Desai | January 12, 2022

Accomplished biomedical engineer, academic leader named Brown School of Engineering dean
Tejal Desai | January 12, 2022

Tejal Desai, an accomplished biomedical engineer and academic leader who earned a bachelor’s degree with Brown’s Class of 1994, has been appointed the next dean of Brown University’s School of Engineering.

An expert in applying micro- and nanoscale technologies to create new ways to deliver medicine to targeted sites in the human body, Desai is a professor and a former longtime chair of the Department of Bioengineering and Therapeutic Sciences at the University of California San Francisco, and inaugural director of UCSF’s Health Innovations Via Engineering (HIVE) initiative.

Continue reading.

Ultrashort-pulse lasers kill bacterial superbugs, spores
Samuel Achilefu | November 23, 2021

Ultrashort-pulse lasers kill bacterial superbugs, spores
Samuel Achilefu | November 23, 2021

Life-threatening bacteria are becoming ever more resistant to antibiotics, making the search for alternatives to antibiotics an increasingly urgent challenge. For certain applications, one alternative may be a special type of laser.

Researchers at Washington University School of Medicine in St. Louis have found that lasers that emit ultrashort pulses of light can kill multidrug-resistant bacteria and hardy bacterial spores. The findings, available online in the Journal of Biophotonics, open up the possibility of using such lasers to destroy bacteria that are hard to kill by other means. The researchers previously have shown that such lasers don’t damage human cells, making it possible to envision using the lasers to sterilize wounds or disinfect blood products.

Continue reading.

A Stunning 3D Map Of Blood Vessels And Cells In A Mouse Skull Could Help Scientists Make New Bones
Warren Grayson | November 19, 2021

A Stunning 3D Map Of Blood Vessels And Cells In A Mouse Skull Could Help Scientists Make New Bones
Warren Grayson | November 19, 2021

Johns Hopkins Medicine scientists have used glowing chemicals and other techniques to create a 3D map of the blood vessels and self-renewing “stem” cells that line and penetrate a mouse skull. The map provides precise locations of blood vessels and stem cells that scientists could eventually use to repair wounds and generate new bone and tissue in the skull.

“We need to see what’s happening inside the skull, including the relative locations of blood vessels and cells and how their organization changes during injury and over time,” says Warren Grayson, Ph.D., professor of biomedical engineering and director of the Laboratory for Craniofacial and Orthopaedic Tissue Engineering at the Johns Hopkins University School of Medicine. His lab focuses on developing biomaterials and transplanting stem cells into the skull to re-create missing bone tissue.

Continue reading.

New imaging technology could buy time for pancreatic cancer patients
Marvin Doyley | November 18, 2021

New imaging technology could buy time for pancreatic cancer patients
Marvin Doyley | November 18, 2021

The insidiousness of pancreatic cancer is how it develops without showing any definitive symptoms. In most cases, by the time it is diagnosed, it is beyond cure.

And yet, for 10 to 20 percent of patients, pancreatic cancer is caught soon enough, before it has metastasized. This provides surgeons a narrow window of time to try to treat the tumors, shrinking them enough to safely remove them.

University of Rochester engineers, imaging scientists, surgeons, and immunologists are working together on a novel imaging technology to help surgeons make the most of that narrow time frame before the cancer spreads.

Continue reading.

Sylvia Wilson Thomas named interim VP of Research & Innovation
Sylvia Wilson Thomas | November 17, 2021

Sylvia Wilson Thomas named interim VP of Research & Innovation
Sylvia Wilson Thomas | November 17, 2021

USF President Rhea Law has named College of Engineering Professor Sylvia Wilson Thomas, a pioneering researcher whose national leadership and advocacy is opening the field of engineering to historically underrepresented students, as interim vice president for USF Research & Innovation.

In her new duties, Dr. Thomas will lead the division of the university responsible for managing research proposals, grants and contracts, as well as USF’s thriving innovation enterprise, which consists of the Technology Transfer Office, the USF Research Park and the Tampa Bay Technology Incubator. Already a member of the USF Research Foundation Board, Dr. Thomas will now serve as the foundation’s president and CEO.

Continue reading.

Headband device suitable for use at home with young ADHD patients
Audrey Bowden | November 16, 2021

Headband device suitable for use at home with young ADHD patients
Audrey Bowden | November 16, 2021

Vanderbilt biomedical engineering professor has developed a prototype headband to measure brain activity that could have widespread application in studying and ultimately treating ADHD and other neurological disorders.

The device is lightweight, portable, and inexpensive to construct. Prototype components cost less than $250, compared to costs exceeding $10,000 for commercial systems.

Audrey Bowden, associate professor of biomedical engineering, and Hadi Hosseini, a colleague at Stanford University, set out to develop a simple device that children and teens diagnosed with attention deficit disorders could wear at home. Their initial prototype is a single-channel functional near-infrared spectroscopy (fNIRS) headband. Functional neuroimaging is a general term for technologies that spatially map brain activity over time.

Continue reading.

New Synthetic Cancer Immunotherapy Effective in Mouse Study
Jennifer Cochran | November 12, 2021

New Synthetic Cancer Immunotherapy Effective in Mouse Study
Jennifer Cochran | November 12, 2021

Stanford researchers have developed a new synthetic molecule, called PIP-CpG, that combines a tumor-targeting agent with a molecule that triggers immune activation. This treatment, can be administered intravenously and can make its way to multiple tumor sites, where it recruits immune cells against cancer.

Three doses of this new immunotherapy prolonged the survival of six of nine laboratory mice with an aggressive triple negative breast cancer. Of the six, three appeared cured of their cancer over the duration of the months long study. A single dose of this molecule induced complete tumor regression in five of ten mice. The synthetic molecule showed similar results in a mouse model of pancreatic cancer.

Continue reading.

New chair of UW Department of Bioengineering named
Princess Imoukhuede | November 2, 2021

New chair of UW Department of Bioengineering named
Princess Imoukhuede | November 2, 2021

Princess Imoukhuede, a leader in systems biology research, engineering education, and academic diversity initiatives, has been named the new chair of the Department of Bioengineering at the University of Washington in Seattle. The department is located in both the UW College of Engineering and the UW School of Medicine. Her appointment is effective Jan. 1, 2022. She will hold the Hunter and Dorothy Simpson Endowed Chair and Professorship. Imoukhuede (pronounced I-muh-KWU-e-de) is currently an associate professor of bioengineering and director of diversity initiatives in the McKelvey School of Engineering at Washington University in St. Louis.

Continue reading.

Seven AIMBE Fellows Elected to National Academy of Medicine
Sam Achilefu et al. | October 18, 2021

Seven AIMBE Fellows Elected to National Academy of Medicine
Sam Achilefu et al. | October 18, 2021

AIMBE congratulates the following Fellows that have been recognized as the newest members of the National Academy of Medicine. To date, 101 of AIMBE Fellows have been elected to the National Academy of Medicine. 2021 newly-elected NAM members from AIMBE are:

  • Samuel Achilefu, Ph.D. 
  • Guillermo Ameer, Sc.D.
  • Yuman Fong, MD
  • Andres J. Garcia, Ph.D. 
  • Linda G. Griffith, Ph.D. 
  • Elisa E. Konofagou, Ph.D. 
  • Carla M. Pugh, MD, Ph.D., FACS 

Continue reading.

Prototype headband device developed for home use with young ADHD patients
Audrey Bowden | October 18, 2021

Prototype headband device developed for home use with young ADHD patients
Audrey Bowden | October 18, 2021

A Vanderbilt biomedical engineering professor has developed a prototype headband to measure brain activity that could have widespread application in studying and ultimately treating ADHD and other neurological disorders.

The device is lightweight, portable, and inexpensive to construct. Prototype components cost less than $250, compared to costs exceeding $10,000 for commercial systems.

Continue reading.

Ranu Jung to Lead Institute for Integrative and Innovative Research
Ranu Jung | October 13, 2021

Ranu Jung to Lead Institute for Integrative and Innovative Research
Ranu Jung | October 13, 2021

Ranu Jung has been named the founding executive director of the Institute for Integrative and Innovative Research (I³R). She will begin in December.

“We are thrilled to welcome Dr. Jung to the University of Arkansas,” said Charles Robinson, interim chancellor. “The Institute for Integrative and Innovative Research will propel the University of Arkansas as a global leader in discovery and applied innovation, and Dr. Jung is the ideal leader to help take us there. She is a world-renowned researcher and visionary.”

Continue reading.

Newly developed gel helps improve the effectiveness of immunotherapy in glioblastoma
Frances Ligler | October 9, 2021

Newly developed gel helps improve the effectiveness of immunotherapy in glioblastoma
Frances Ligler | October 9, 2021

Pairing a newly developed gel with immunotherapy that was delivered to post-surgical mouse brains with glioblastoma, a highly malignant and deadly cancer, improved the immunotherapy’s effectiveness, report researchers from the University of North Carolina Lineberger Comprehensive Cancer Center and colleagues. The findings appeared on Oct. 6, 2021, in Science Advances.

The researchers used CAR-T cell (chimeric antigen receptor-T cell) immunotherapy, which involves harvesting immune-system T cells from a patient and genetically re-engineering them in the lab to recognize targets on the surface of cancer cells. In this mouse study, the CAR-T cells and gel were placed to fill in the area where a glioblastoma tumor had just been surgically removed. Previous studies have shown that administering T cells alone have produced limited benefit.

Continue reading.

Team to create framework for evaluating AI-based medical imaging
Kyle Myers | October 8, 2021

Team to create framework for evaluating AI-based medical imaging
Kyle Myers | October 8, 2021

Artificial intelligence (AI) is showing promise in multiple medical imaging applications. Yet rigorous evaluation of these methods is important before they are introduced into clinical practice.

A multi-institutional and multiagency team led by researchers at Washington University in St. Louis is outlining a framework for objective task-based evaluation of AI-based methods and outlining the key role that physicians play in these evaluations. They also are providing techniques to conduct such evaluations, particularly in positron emission tomography (PET).

Continue reading.

Bio-Inspired Autonomous Materials
Megan Valentine | October 5, 2021

Bio-Inspired Autonomous Materials
Megan Valentine | October 5, 2021

Megan Valentine, a professor of mechanical engineering and co-director of the California NanoSystems Institute at UC Santa Barbara, has been awarded a $1.8 million collaborative grant by the National Science Foundation to design and create next-generation materials inspired and empowered by biological cells. Valentine will be working alongside a team of physicists, biologists and engineers, four of whom are women.

Led by Rae Robertson-Anderson, a professor of physics and biophysics at the University of San Diego, the team also includes Jennifer Ross at Syracuse University, Moumita Das at Rochester Institute of Technology, and Michael Rust at the University of Chicago.

Continue reading.

Northwestern-invented biomaterial technology moves from lab bench to the orthopaedic market
Guillermo Ameer | September 22, 2021

Northwestern-invented biomaterial technology moves from lab bench to the orthopaedic market
Guillermo Ameer | September 22, 2021

Northwestern biomedical engineer Guillermo A. Ameer has achieved a rare, major accomplishment. A medical product based on novel biomaterials pioneered in his laboratory will be widely available for use in musculoskeletal surgeries to directly benefit patients.

The biomaterial technology, called CITREGEN™, developed by the start-up company Acuitive Technologies, Inc., is featured in Stryker Corporation’s CITRELOCK™, an innovative device that will debut this week at the American Orthopaedic Foot and Ankle Society’s annual meeting in Charlotte, N.C. The CITRELOCK™ Tendon Fixation Device System is used to attach soft tissue grafts to bone in reconstruction surgeries and provides surgeons a differentiated design due to Ameer’s biomaterial. 

Continue reading.

Institute Professor Paula Hammond named to White House science council
Paula Hammond | September 22, 2021

Institute Professor Paula Hammond named to White House science council
Paula Hammond | September 22, 2021

Paula Hammond, an MIT Institute Professor and head of MIT’s Department of Chemical Engineering, has been chosen to serve on the President’s Council of Advisors on Science and Technology (PCAST), the White House announced today.

The council advises the president on matters involving science, technology, education, and innovation policy. It also provides the White House with scientific and technical information that is needed to inform public policy relating to the U.S. economy, U.S. workers, and national security.

Continue reading.

Statistical model defines ketamine anesthesia’s effects on the brain
Emery Brown | September 21, 2021

Statistical model defines ketamine anesthesia’s effects on the brain
Emery Brown | September 21, 2021

Neuroscientists at MIT and Massachusetts General Hospital develop a statistical framework that describes brain-state changes patients experience under ketamine-induced anesthesia.

By developing the first statistical model to finely characterize how ketamine anesthesia affects the brain, a team of researchers at MIT’s Picower Institute for Learning and Memory and Massachusetts General Hospital have laid new groundwork for three advances: understanding how ketamine induces anesthesia; monitoring the unconsciousness of patients in surgery; and applying a new method of analyzing brain activity.

Continue reading.

Plants as mRNA Factories for Edible Vaccines
Nicole Steinmetz | September 17, 2021

Plants as mRNA Factories for Edible Vaccines
Nicole Steinmetz | September 17, 2021

University of California-Riverside (UCR) researchers say they are studying whether they can turn edible plants like lettuce into mRNA vaccine factories.

One of the challenges with this new technology is that it must be kept cold to maintain stability during transport and storage. If this new project is successful, plant-based mRNA vaccines, which can be eaten, could overcome this challenge with the ability to be stored at room temperature.

Continue reading.

Researchers design sensors to rapidly detect plant hormones
Mary Chan-Park | September 13, 2021

Researchers design sensors to rapidly detect plant hormones
Mary Chan-Park | September 13, 2021

Researchers from the Disruptive and Sustainable Technologies for Agricultural Precision (DiSTAP) interdisciplinary research group of the Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, and their local collaborators from Temasek Life Sciences Laboratory (TLL) and Nanyang Technological University (NTU), have developed the first-ever nanosensor to enable rapid testing of synthetic auxin plant hormones. The novel nanosensors are safer and less tedious than existing techniques for testing plants’ response to compounds such as herbicide, and can be transformative in improving agricultural production and our understanding of plant growth.

Continue reading.

A fountain of youth for aging muscles
Helen Blau | September 2, 2021

A fountain of youth for aging muscles
Helen Blau | September 2, 2021

Regenerative medicine could hold the keys to rejuvenating older muscles, and research supporting that will be featured at the Mayo Clinic Symposium on Regenerative Medicine and Surgery. Preclinical research by Helen Blau, Ph.D., Stanford University School of Medicine, discovered a protein that triggers muscle loss and a way to block it to restore youthful muscle strength. Dr. Blau, director of the Baxter Laboratory for Stem Cell Biology at Stanford University School of Medicine, will present her research in a virtual keynote speech.

Continue reading.

Building a better chemical factory – out of microbes
Kristala Prather | August 24, 2021

Building a better chemical factory – out of microbes
Kristala Prather | August 24, 2021

Metabolic engineers have a problem: cells are selfish. The scientists want to use microbes to produce chemical compounds for industrial applications. The microbes prefer to concentrate on their own growth.

Kristala L. Jones Prather ’94 has devised a tool that satisfies both conflicting objectives. Her metabolite valve acts like a train switch: it senses when a cell culture has reproduced enough to sustain itself and then redirects metabolic flux—the movement of molecules in a pathway—down the track that synthesizes the desired compound. The results: greater yield of the product and sufficient cell growth to keep the culture healthy and productive.

Continue reading.

Revving Up to Advance Battery Research for Electric Vehicles
Esther Takeuchi | August 24, 2021

Revving Up to Advance Battery Research for Electric Vehicles
Esther Takeuchi | August 24, 2021

Stony Brook University’s Institute for Electrochemically Stored Energy, through the Research Foundation of SUNY, has received a major grant from the U.S Department of Energy (DOE) to further develop battery technology that could potentially be used in the creation of more efficient electric vehicles (EVs). The research, led by Esther Takeuchi, PhD, is funded through the DOE’s Office of Energy Efficiency and Renewable Energy, Vehicles Technology Office, and is part of a national research initiative to accelerate advancements in zero-emissions vehicles. The grant totals $2,285,813, effective October 1, 2021, and runs through December 2024.

Continue reading.

Locascio Nominated to Return to NIST as Director
Laurie Locascio | July 22, 2021

Locascio Nominated to Return to NIST as Director
Laurie Locascio | July 22, 2021

President Biden announced on July 16 that he is nominating Laurie Locascio to be director of the National Institute of Standards and Technology, a $1 billion agency within the Commerce Department. Locascio spent most of her career at NIST, joining as a bioengineering researcher in 1986 and ultimately taking on a series of senior leadership roles before leaving the agency in 2017. Since then, she has been vice president for research at the Baltimore and College Park campuses of the University of Maryland.

Pending her confirmation by the Senate, Locascio will return to the agency at a moment when its responsibilities are expanding and lawmakers are proposing it play a substantial role in national innovation initiatives currently under consideration in Congress. The Biden administration is likewise taking a significant interest in NIST, proposing to expand its budget by 45% in the next fiscal year.

Continue reading.

A noninvasive test to detect cancer cells and pinpoint their location
Sangeeta Bhatia | July 15, 2021

A noninvasive test to detect cancer cells and pinpoint their location
Sangeeta Bhatia | July 15, 2021

Most of the tests that doctors use to diagnose cancer — such as mammography, colonoscopy, and CT scans — are based on imaging. More recently, researchers have also developed molecular diagnostics that can detect specific cancer-associated molecules that circulate in bodily fluids like blood or urine.

MIT engineers have now created a new diagnostic nanoparticle that combines both of these features: It can reveal the presence of cancerous proteins through a urine test, and it functions as an imaging agent, pinpointing the tumor location. In principle, this diagnostic could be used to detect cancer anywhere in the body, including tumors that have metastasized from their original locations.

Continue reading.

Interdisciplinary team researches potential treatments for intervertebral disc disease
Lori Setton | July 13, 2021

Interdisciplinary team researches potential treatments for intervertebral disc disease
Lori Setton | July 13, 2021

Intervertebral discs provide load support and motion between vertebrae in the spine, but when they start to break down and compress due to aging, disease or injury, a person experiences significant pain and reduced mobility. An interdisciplinary team of researchers at Washington University in St. Louis found a way to deliver new cells to the cushioning material in intervertebral discs that may restore their height, which could reduce pain and improve mobility.

Lori Setton, the Lucy & Stanley Lopata Distinguished Professor of Biomedical Engineering and chair of the Department of Biomedical Engineering in the McKelvey School of Engineering, led a team of biomedical engineering researchers in the McKelvey School of Engineering and researchers from the Department of Orthopaedic Surgery in the School of Medicine to develop a hydrogel modified with peptides that control cell attachment and cell fate.

Continue reading.

Opening Blood-Brain Barrier with Focused Ultrasound
Elisa Konofagou | July 10, 2021

Opening Blood-Brain Barrier with Focused Ultrasound
Elisa Konofagou | July 10, 2021

Ultrasound is typically synonymous with prenatal care, but soon an emerging platform called focused ultrasound could treat cancer.

In a new clinical trial, oncologists Stergios Zacharoulis, MD, professor of pediatrics at Columbia’s Vagelos College of Physicians & Surgeons, and Cheng-Chia Wu, MD, PhD, assistant professor of radiation oncology, are using a focused ultrasound technique developed by Elisa Konofagou, PhD, professor of biomedical engineering and radiology at Columbia Engineering to more effectively and safely deliver chemotherapy for pediatric patients with an aggressive type of brain cancer, diffuse intrinsic pontine glioma (DIPG). The new technique works to temporarily open the blood-brain barrier, a natural protective layer in our brain, that blocks pathogens, bacteria, viruses, and other detrimental microoganisms circulating in the bloodstream from entering the central nervous system. The blood-brain barrier also limits the ability of systemic medications like chemotherapy from reaching brain tumors, making it a key challenge in effectively delivering therapies for brain tumors.

Continue reading.

NAACP to Present Prestigious Spingarn Medal to UConn’s Dr. Cato T. Laurencin at 112th Annual Convention
Cato Laurencin | July 6, 2021

NAACP to Present Prestigious Spingarn Medal to UConn’s Dr. Cato T. Laurencin at 112th Annual Convention
Cato Laurencin | July 6, 2021

Professor Cato T. Laurencin of the University of Connecticut is the 2021 recipient of the prestigious Spingarn Medal, the highest honor of the National Association for the Advancement of Colored People (NAACP).

“This is the most iconic award of the NAACP,” says Laurencin, who serves as the University Professor and Albert and Wilda Van Dusen Distinguished Endowed Professor of Orthopaedic Surgery, Professor of Chemical Engineering, Professor of Materials Science and Engineering and Professor of Biomedical Engineering at UConn.

Continue reading.

Synthetic biology circuits can respond within seconds
Bonnie Berger | July 1, 2021

Synthetic biology circuits can respond within seconds
Bonnie Berger | July 1, 2021

Synthetic biology offers a way to engineer cells to perform novel functions, such as glowing with fluorescent light when they detect a certain chemical. Usually, this is done by altering cells so they express genes that can be triggered by a certain input.

However, there is often a long lag time between an event such as detecting a molecule and the resulting output, because of the time required for cells to transcribe and translate the necessary genes. MIT synthetic biologists have now developed an alternative approach to designing such circuits, which relies exclusively on fast, reversible protein-protein interactions. This means that there’s no waiting for genes to be transcribed or translated into proteins, so circuits can be turned on much faster — within seconds.

Continue reading.

Director Lander, the time is now
Lola Eniola-Adefeso and Hana El-Samad | July 2, 2021

Director Lander, the time is now
Lola Eniola-Adefeso and Hana El-Samad | July 2, 2021

The Biden administration’s decision to elevate the Director of the White House Office of Science and Technology Policy (OSTP) to a cabinet-level position is a win for science. Eric Lander, confirmed in May by the Senate, is now advising the president on the scientific, engineering, and technological policies of the US government. As Dr. Lander carries out this task, we hope that he keeps in mind what President Biden asked him in a letter in January: “How can we guarantee that the fruits of science and technology are fully shared across America and among all Americans?”

The challenges ahead are formidable. The devastating health and economic impacts of two major crises—climate change and the COVID-19 pandemic—have revealed deep societal fault lines that prevent the United States from drawing on the talents of all Americans to tackle these problems. Thus, there is an urgent need for smart and socially minded policy-making.

Continue reading.

Rethinking Plastics
LaShanda Korley | July 1, 2021

Rethinking Plastics
LaShanda Korley | July 1, 2021

People lived without plastic until the last century or so, but most of us would find it hard to imagine how.

Plastics now are everywhere in our lives, providing low-cost convenience and other benefits in countless applications. They can be shaped to almost any task, from wispy films to squishy children’s toys and hard-core components. They have shown themselves vital in medicine and have been pivotal in the global effort to slow the spread of the COVID-19 pandemic over the past 16 months.

Plastics seem indispensable these days.

Unfortunately for the long-term, they are also nearly indestructible. Our planet now bears the weight of more than seven billion tons of plastics, with more being produced every day. An ever-growing waste stream clogs our landfills, pollutes our waterways and poses an urgent crisis for our planet.

Continue reading.

NSF selects Susan S. Margulies to head the Engineering Directorate
Susan Margulies | July 1, 2021

NSF selects Susan S. Margulies to head the Engineering Directorate
Susan Margulies | July 1, 2021

The U.S. National Science Foundation has selected Susan S. Margulies to head the Directorate for Engineering. She is the first biomedical engineer to lead the engineering directorate, which supports fundamental research in emerging and frontier basic research areas.

Since 2017, Margulies has been professor and chair of the Wallace H. Coulter Department of Biomedical Engineering, housed jointly at the Georgia Institute of Technology and Emory University. Previously, she held positions as professor of bioengineering and neurosurgery at the University of Pennsylvania. She has won numerous awards and honors, including fellowships from the American Institute of Medical and Biological Engineering, the American Society of Mechanical Engineers, and the Biomedical Engineering Society, as well as numerous other recognitions throughout her career. Margulies is a member of the National Academy of Engineering and the National Academy of Medicine.

Continue reading.

Melina R. Kibbe Named Dean of UVA’s School of Medicine
Melina Kibbe | June 9, 2021

Melina R. Kibbe Named Dean of UVA’s School of Medicine
Melina Kibbe | June 9, 2021

The University of Virginia has named pioneering physician leader Melina R. Kibbe, MD, as 17th dean of the UVA School of Medicine and chief health affairs officer for UVA Health.

Dr. Kibbe is an outstanding clinician, researcher and highly respected educator. She comes to UVA effective Sept. 15 from her role as the Colin G. Thomas Jr. Distinguished Professor and Chair of the Department of Surgery at the University of North Carolina at Chapel Hill, where she also holds an appointment in the Department of Biomedical Engineering.

Continue reading.

Visiting professor wins ScienceFather award for IVF research
Urmila Diwekar | June 7, 2021

Visiting professor wins ScienceFather award for IVF research
Urmila Diwekar | June 7, 2021

The most common technique, and often the last resort, for couples struggling to conceive a child is in vitro fertilization. However, despite many advances since the first IVF baby was conceived in 1978, the procedure is still expensive and has a success rate of around 20% to 35% on the first attempt.

But thanks to the work of Richard and Loan Hill Visiting Professor Urmila Diwekar, IVF treatments may soon be personalized to individual patients to increase their chance of success. Diwekar recently received a New Science Inventions Award from ScienceFather for her work developing a mathematical procedure to provide a customized drug dosage during an IVF treatment.

Continue reading.

Building better bubbles for ultrasound could enhance image quality, facilitate treatments
Agata Exner | May 25, 2021

Building better bubbles for ultrasound could enhance image quality, facilitate treatments
Agata Exner | May 25, 2021

Ultrasound is a non-invasive technique that uses sound waves to either generate images of tissues inside of the body, or to interact with tissues as a therapeutic tool – to break up gallstones, increase blood flow, or ablate tumors, for instance. Ultrasound contrast agents, which are typically tiny bubbles filled with gas, can enhance the reflection of ultrasound waves to improve the quality of an ultrasound image. However, commercially available contrast agents are confined to the blood vessels, typically remain in the bloodstream for less than 10 minutes, and are used in only a handful of settings in the United States.

But what if ultrasound contrast agents could leave the vasculature, persist for an extended period of time, and be customized for a specific application.

Continue reading.

Linda Petzold Elected to National Academy of Sciences
Linda Petzold | May 15, 2021

Linda Petzold Elected to National Academy of Sciences
Linda Petzold | May 15, 2021

For their distinguished and continuing achievements in original research, UC Santa Barbara professors Denise Montell, Linda Petzold and Glenn Fredrickson have been elected to the National Academy of Sciences (NAS). They are among 120 members, and 30 international members, to join the academy this year.

Membership in the NAS is one of the most prestigious recognitions awarded to a scientist or engineer in the United States.

Continue reading.

Implantable ‘Living Pharmacy’ Could Control Body’s Sleep/Wake Cycles
Guillermo Ameer | May 13, 2021

Implantable ‘Living Pharmacy’ Could Control Body’s Sleep/Wake Cycles
Guillermo Ameer | May 13, 2021

A Northwestern University-led team of researchers has signed a cooperative agreement with the Defense Advanced Research Projects Agency (DARPA) to develop a wireless, fully implantable device that will control the body’s circadian clock, halving the time it takes to recover from disrupted sleep/wake cycles.

The first phase of the highly interdisciplinary program will focus on developing the implant. The second phase, contingent on the first, will validate the device. If that milestone is met, then researchers will test the device in human trials, as part of the third phase. The full funding corresponds to $33 million over four-and-a-half years.

Continue reading.

Norma Alcantar to be Inducted into Florida Inventors Hall of Fame
Norma Alcantar | April 29, 2021

Norma Alcantar to be Inducted into Florida Inventors Hall of Fame
Norma Alcantar | April 29, 2021

USF Professor Norma Alcantar—who engineered an ancient practice of cleaning water with cactus mucilage to create modern technologies—is among seven new inductees to the Florida Inventors Hall of Fame announced today.

Alcantar joins noted inventors Dean Kamen, often referred to as the modern Thomas Edison due to the breadth and scope of his inventions, and Mark Dean, who holds three patents on the original IBM personal computer and is the co-inventor of the ISA bus which revolutionized modern computing. The full list of inductees can be found…

Continue reading.

These cellular clocks help explain why elephants are bigger than mice
Helen Blau | April 27, 2021

These cellular clocks help explain why elephants are bigger than mice
Helen Blau | April 27, 2021

In her laboratory in Barcelona, Spain, Miki Ebisuya has built a clock without cogs, springs or numbers. This clock doesn’t tick. It is made of genes and proteins, and it keeps time in a layer of cells that Ebisuya’s team has grown in its lab. This biological clock is tiny, but it could help to explain some of the most conspicuous differences between animal species.

Animal cells bustle with activity, and the pace varies between species. In all observed instances, mouse cells run faster than human cells, which tick faster than whale cells. These differences affect how big an animal gets, how its parts are arranged and perhaps even how long it will live. But biologists have long wondered what cellular timekeepers control these speeds, and why they vary.

Continue reading.

Professor Cato T. Laurencin Has Been Elected to the National Academy of Sciences
Cato Laurencin | April 27, 2021

Professor Cato T. Laurencin Has Been Elected to the National Academy of Sciences
Cato Laurencin | April 27, 2021

On April 26, 2021 the National Academy of Sciences announced that Dr. Cato T. Laurencin was elected as a new member, making him the first surgeon to be elected to membership in the three National Academies of Sciences, Engineering and Medicine and Fellow of the National Academy of Inventors.

Laurencin is known as a world leader in biomaterials, polymeric materials science, nanotechnology, stem cell science, drug delivery systems, and a field he has pioneered, regenerative engineering. Laurencin’s papers and patents have had broad impact on human health, including pioneering the use of nanotechnology in musculoskeletal regeneration and ushering in a new era in orthopaedic therapies. For this work, Dr. Laurencin received the National Medal of Technology and Innovation, the highest honor bestowed in America for technological achievement, from President Barack Obama.

Continue reading.

Jennifer West Named Dean of Engineering and Applied Science
Jennifer West | April 23, 2021

Jennifer West Named Dean of Engineering and Applied Science
Jennifer West | April 23, 2021

The University of Virginia today announced the appointment of Jennifer L. West as the 14th dean of the School of Engineering and Applied Science, effective July 1.

West is currently the Associate Dean for Ph.D. Education and the Fitzpatrick Family University Professor in Biomedical Engineering and Mechanical Engineering & Materials Science at the Pratt School of Engineering at Duke University. West comes to UVA with a formidable record of accomplishment and experience as a transformational researcher, award-winning teacher and mentor, and inventor and entrepreneur, with 25 years of experience in engineering education and leadership.

Continue reading.

Micro-molded ‘ice cube tray’ scaffold is next step in returning sight to injured retinas
Sarah Gong | April 21, 2021

Micro-molded ‘ice cube tray’ scaffold is next step in returning sight to injured retinas
Sarah Gong | April 21, 2021

Tens of millions of people worldwide are affected by diseases like macular degeneration or have had accidents that permanently damage the light-sensitive photoreceptors within their retinas that enable vision.

The human body is not capable of regenerating those photoreceptors, but new advances by medical researchers and engineers at the University of Wisconsin–Madison may provide hope for those suffering from vision loss. They described their work today in the journal Science Advances.

Continue reading.

Ameer Named Fellow of Materials Research Society
Guillermo Ameer | April 1, 2021

Ameer Named Fellow of Materials Research Society
Guillermo Ameer | April 1, 2021

Northwestern Engineering’s Guillermo A. Ameer has been named a fellow of the Materials Research Society for his contributions to regenerative engineering through pioneering work developing antioxidant citrate-based polymers that are useful for musculoskeletal, cardiovascular, dermal, and urological applications, rendering them enabling technologies to improve health.

Ameer is the Daniel Hale Williams Professor of Biomedical Engineering in the McCormick School of Engineering and a professor of surgery in Northwestern’s Feinberg School of Medicine. He also is founding director of Northwestern’s Center for Advanced Regenerative Engineering.

Continue reading.

Exploiting cancer cells to aid in their own destruction
Melody Swartz | March 24, 2021

Exploiting cancer cells to aid in their own destruction
Melody Swartz | March 24, 2021

Immunotherapy, which recruits the body’s own immune system to attack cancer, has given many cancer patients a new avenue to treat the disease. But many cancer immunotherapy treatments can be expensive, have devastating side effects, and only work in a fraction of patients.

Researchers at the Pritzker School of Molecular Engineering at the University of Chicago have developed a new therapeutic vaccine that uses a patient’s own tumor cells to train their immune system to find and kill cancer.

The vaccine, which is injected into the skin just like a traditional vaccine, stopped melanoma tumor growth in mice. It even worked long-term, destroying new tumors long after the initial injection.

Continue reading.

Ultrasound outperforms legacy technique at pinpointing heart arrhythmias
Elisa Konofagou | March 22, 2021

Ultrasound outperforms legacy technique at pinpointing heart arrhythmias
Elisa Konofagou | March 22, 2021

A commonly available ultrasound technique proved superior to a long-used approach at spotting abnormal heart rhythms and may help treat patients with this worldwide problem, according to recently published research.

The method—electromechanical wave imaging (EWI)—creates a 3D cardiac map to pinpoint electromechanical activity that causes arrhythmias, investigators with Columbia University in New York reported in Science Translational Medicine. Most care settings have this portable machine handy and can use it during ablation procedures to accurately guide the catheter to the proper area.

Continue reading.

Gordana Vunjak-Novakovic Receives AIMBE’s Highest Award
Gordana Vunjak-Novakovic | March 22, 2021

Gordana Vunjak-Novakovic Receives AIMBE’s Highest Award
Gordana Vunjak-Novakovic | March 22, 2021

AIMBE is honored to recognize Gordana Vunjak-Novakovic with its Pierre Galletti Award, the Institute’s highest accolade. Including years of contributions to AIMBE and the BME community, Vunjak-Novakovic is recognized for impactful innovations in technologies to generate, understand and utilize functional human tissues, especially in regenerative engineering, studies of development and disease, while inspiring the next generation of practitioners. This award is presented to an individual in recognition of his/her contributions to public awareness of medical and biological engineering, and to the advancement of biomedical public policy in science, engineering, and education.

Continue reading.

Researchers identify head impact rates in four major high school sports
Kristy Arbogast | March 17, 2021

Researchers identify head impact rates in four major high school sports
Kristy Arbogast | March 17, 2021

As high school athletes return to practice and games for a variety of sports, the threat of concussions remains. A new study from researchers at Children’s Hospital of Philadelphia (CHOP) used head impact sensors in four different sports and studied male and female athletes to determine which of these sports put students at the highest risk for head impacts that could lead to concussions. The findings were published online by the Orthopaedic Journal of Sports Medicine.

“Adolescents are particularly vulnerable to concussion because they frequently participate in sporting and recreational activities and have slower recovery periods compared to adults,” said Kristy Arbogast, PhD, senior author and co-lead of the Minds Matter Concussion Program at CHOP. “Providing reliable data on head impact exposure and sport-specific mechanisms may help sports organizations identify strategies to reduce impact exposure and lower the risk of acute injury.

Continue reading.

Stanford Researchers Find Culprit In Muscle Aging And How To Knock It Down
Helen Blau | March 17, 2021

Stanford Researchers Find Culprit In Muscle Aging And How To Knock It Down
Helen Blau | March 17, 2021

For well over a decade now, scientists have been experimenting with “couch potato” drugs that could confer the benefits of exercise without having to flex a muscle. The latest candidate is a small molecule inhibitor impeding the degradation of prostaglandin E2 (PGE2), recently shown to act directly on mature muscle fibers to prevent deleterious molecular changes that arise with aging, according to Helen Blau, professor of microbiology and immunology and director of the Baxter Laboratory for Stem Cell Biology at Stanford University School of Medicine.

In gel form, PGE2 is already being used to induce labor and treat respiratory distress in newborns, says Blau. It now appears that restoring PGE2 later in life could be a way to rejuvenate aging muscles and possibly treat conditions such as age-related muscle atrophy (sarcopenia), Duchenne muscular dystrophy, and other myopathies.

Continue reading.

Linda Griffith honored for contributions to biological engineering education
Linda Griffith | March 11, 2021

Linda Griffith honored for contributions to biological engineering education
Linda Griffith | March 11, 2021

The National Academy of Engineering (NAE) has announced that two MIT professors have been jointly awarded the Bernard M. Gordon Prize for Innovation in Engineering and Technology Education, the most prestigious engineering education award in the United States.

Linda G. Griffith, the School of Engineering Professor of Teaching Innovation in the Department of Biological Engineering, and Douglas A. Lauffenburger, the Ford Professor of Biological Engineering, Chemical Engineering and Biology, were recognized for their respective contributions to “the establishment of a new biology-based engineering education, producing a new generation of leaders capable of addressing world problems with innovative biological technologies,” according to an NAE statement.

Continue reading.

Olin President Gilda Barabino Named AAAS President-Elect
Gilda Barabino | March 3, 2021

Olin President Gilda Barabino Named AAAS President-Elect
Gilda Barabino | March 3, 2021

Gilda A. Barabino, Ph.D., President of Olin College of Engineering, has been selected as president-elect of the American Association for the Advancement of Science.

Barabino was elected as an AAAS Fellow in 2010 and has been a member of the organization since 1987. She began her term on Feb. 24. After serving for one year as president-elect, Barabino will serve one year as AAAS president and then one year as chair of the AAAS Board of Directors.

Continue reading.

Purigen Simplifies Simultaneous Extraction and Purification of DNA and RNA from Challenging FFPE Samples
Juan Santiago | March 2, 2021

Purigen Simplifies Simultaneous Extraction and Purification of DNA and RNA from Challenging FFPE Samples
Juan Santiago | March 2, 2021

Purigen Biosystems, Inc., a leading provider of next-generation technologies for extracting and purifying nucleic acids from biological samples, today announced the launch of the Ionic® FFPE Complete Purification Kit. Scientists are now able to consistently recover both DNA and RNA (mRNA and miRNA) simultaneously from formalin-fixed, paraffin-embedded (FFPE) tissue samples in a single workflow. Purigen is showcasing the advantages of the new kit during the virtual Advances in Genome Biology and Technology (AGBT) 2021 annual meeting.

Continue reading.

Tissue-engineered implants provide new hope for vocal injuries
Sherry Harbin | February 23, 2021

Tissue-engineered implants provide new hope for vocal injuries
Sherry Harbin | February 23, 2021

New technology from Purdue University and Indiana University School of Medicine innovators may one day help patients who suffer devastating vocal injuries from surgery on the larynx.

A collaborative team consisting of Purdue biomedical engineers and clinicians from IU has tissue-engineered component tissue replacements that support reconstruction of the larynx. The team’s work is published in The Laryngoscope.

Continue reading.

A*Star scientist Jackie Ying elected to prestigious US engineering academy based on work in Singapore
Jackie Y. Ying | February 11, 2021

A*Star scientist Jackie Ying elected to prestigious US engineering academy based on work in Singapore
Jackie Y. Ying | February 11, 2021

Agency for Science, Technology and Research (A*Star) senior fellow and head of NanoBio Lab Jackie Y. Ying has become the first scientist to be elected as a member to the prestigious United States National Academy of Engineering (NAE) based on her research in Singapore.

Recognised for her contributions in nanotechnology, Professor Ying, an American, is one of only two – among the 106 new American members elected – who are based outside the US, A*Star said in a statement on Thursday (Feb 11).

Continue reading.

Wonder Fungi
Michelle O’Malley | February 1, 2021

Wonder Fungi
Michelle O’Malley | February 1, 2021

Michelle O’Malley has long been inspired by gut microbes. Since she began studying the herbivore digestive tract, the UC Santa Barbara chemical engineering professor has guided several students to their doctoral degrees, won early and mid-career awards (including a recognition from President Obama), attained tenure and advanced to the position of full professor. She even had three children along the way. A constant through it all: goat poop.

Continue reading.

Scientists “Farm” Natural Killer Cells Using a Microfluidic Chip in Novel Cancer Fighting Approach
Sunitha Nagrath | Jan. 28, 2021

Scientists “Farm” Natural Killer Cells Using a Microfluidic Chip in Novel Cancer Fighting Approach
Sunitha Nagrath | Jan. 28, 2021

Building on the promise of emerging therapies to deploy the body’s “natural killer” immune cells to fight cancer, researchers at the University of Michigan Rogel Cancer Center and U-M College of Engineering have gone one step further.

They’ve developed what is believed to be the first systematic way to catch natural killer cells and get them to release cancer-killing packets called exosomes. These nano-scale exosomes are thousands of times smaller than natural killer cells — or NK cells for short — and thus better able to penetrate cancer cells’ defenses.

Continue reading.

Algorithms Designed to Study Language Can Predict Immune “Escape” Mutations for HIV, Influenza, and SARS-CoV-2
Bonnie Berger | January 15, 2021

Algorithms Designed to Study Language Can Predict Immune “Escape” Mutations for HIV, Influenza, and SARS-CoV-2
Bonnie Berger | January 15, 2021

By bridging the conceptual divide between human language and viral evolution, MIT researchers have developed a powerful new computational tool for predicting the mutations that allow viruses to “escape” human immunity or vaccines. Its use could negate the need for high-throughput experimental techniques that are currently employed to identify potential mutations that could allow a virus to escape recognition. The computational model, based on models that were originally developed to analyze language, can predict which sections of viral surface proteins are more likely to mutate in a way that would enable viral escape, and it can also identify sections that are less likely to mutate, which would represent good targets for new vaccines.

Continue reading.

Small molecule restores muscle strength, boosts endurance in old mice, study finds
Helen Blau | December 10, 2020

Small molecule restores muscle strength, boosts endurance in old mice, study finds
Helen Blau | December 10, 2020

Blocking the activity of a single protein in old mice for one month restores mass and strength to the animals’ withered muscles and helps them run longer on a treadmill, according to a study by researchers at the Stanford University School of Medicine. Conversely, increasing the expression of the protein in young mice causes their muscles to atrophy and weaken.

“The improvement is really quite dramatic” said Helen Blau, PhD, professor of microbiology and immunology. “The old mice are about 15% to 20% stronger after one month of treatment, and their muscle fibers look like young muscle. Considering that humans lose about 10% of muscle strength per decade after about age 50, this is quite remarkable.

Continue reading.

Medical device using Northwestern-invented biomaterial receives FDA clearance
Guillermo Ameer | October 21, 2020

Medical device using Northwestern-invented biomaterial receives FDA clearance
Guillermo Ameer | October 21, 2020

An innovative orthopedic medical device fabricated from a novel biomaterial pioneered in the laboratory of Northwestern University professor Guillermo A. Ameer has received clearance from the U.S. Food and Drug Administration (FDA) for use in surgeries to attach soft tissue grafts to bone.

The biomaterial is the first thermoset biodegradable synthetic polymer ever approved for use in an implantable medical device. It’s unique chemical and mechanical properties enable cutting-edge implant designs that protect the soft tissue graft during insertion and optimize graft fixation to bone.

Continue reading.

Melody Swartz elected to the National Academy of Medicine
Melody Swartz | October 19, 2020

Melody Swartz elected to the National Academy of Medicine
Melody Swartz | October 19, 2020

Today it was announced that Melody Swartz, William B. Ogden Professor of Molecular Engineering at the Pritzker School of Molecular Engineering (PME) at the University of Chicago, has been elected to membership in the National Academy of Medicine.

Swartz holds a joint appointment in the Ben May Department for Cancer Research and serves as deputy dean for faculty affairs at Pritzker Molecular Engineering. She is also a co-founder of the Chicago Immunoengineering Innovation Center (CIIC). Her research interests include lymphatic physiology, cancer research, and immunotherapy.

Continue reading.

Susan Margulies Elected to National Academy of Medicine
Susan Margulies | October 19, 2020

Susan Margulies Elected to National Academy of Medicine
Susan Margulies | October 19, 2020

The National Academy of Medicine (NAM) has elected Georgia Tech Professor Susan Margulies to its prestigious 2020 class. Election to NAM is considered one of the highest honors in the fields of health and medicine and recognizes individuals who have demonstrated outstanding professional achievement and commitment to service. She is only the second person from Georgia Tech to receive the honor. The late Bob Nerem, founding director of the Petit Institute for Bioengineering and Bioscience, is the other.

Margulies is the Wallace H. Coulter Professor and Chair in the Wallace H. Coulter Department of Biomedical Engineering (BME) at Georgia Institute of Technology and Emory University, a shared department between the two schools. She is also a Georgia Research Alliance Eminent Scholar in Injury Biomechanics. Her research interests center around traumatic brain injury in children and ventilator-induced lung injury with a focus in these areas on prevention, intervention and treatments.

Continue reading.

Gilda Barabino Elected to National Academy of Medicine
Gilda Barabino | October 19, 2020

Gilda Barabino Elected to National Academy of Medicine
Gilda Barabino | October 19, 2020

Olin College President Gilda A. Barabino has been elected to the National Academy of Medicine, the academy announced on Monday, October 19 at its annual meeting. Election to the Academy is considered one of the highest honors in the fields of health and medicine and recognizes individuals who have demonstrated outstanding professional achievement and commitment to service.

Barabino’s election honors her leadership and contributions in shaping and transforming the face of biomedical engineering through the integration of scientific discovery, engineering applications, and the preparation of a diverse biomedical workforce to improve human health, and for her seminal discoveries in sickle cell research.

Continue reading.

Purigen Launches New Extraction and Purification Kit that Enables Scientists to Maximize Usable DNA from Limited Biological Samples
Juan Santiago | October 14, 2020

Purigen Launches New Extraction and Purification Kit that Enables Scientists to Maximize Usable DNA from Limited Biological Samples
Juan Santiago | October 14, 2020

Purigen Biosystems, Inc., a leading provider of next-generation technologies for extracting and purifying nucleic acids from biological samples, today announced the launch of the Ionic® Cells to Pure DNA Low Input Kit for researchers working with limited biological samples. The simplified and automated 60-minute workflow delivers high-quality DNA for the rapid investigation of genetic abnormalities or examination of disease treatment effects.

The Ionic Cells to Pure DNA Low Input Kit offers consistent recovery of DNA with yields near the theoretical maximum for as many as 100,000 down to as few as 10 cultured or sorted cells. Compared to leading column-based products, the new kit delivers up to twice the amount of DNA with a significantly higher proportion greater than 20 kb in length. Regardless of the input amount, the workflow is the same and does not require carrier RNA. The prepared DNA is ready for analysis by downstream techniques such as next-generation sequencing (NGS) or qPCR.

Continue reading.

Researchers Use Lab-grown Tissue Grafts for Personalized Joint Replacement
Gordana Vunjak-Novakovic | October 14, 2020

Researchers Use Lab-grown Tissue Grafts for Personalized Joint Replacement
Gordana Vunjak-Novakovic | October 14, 2020

The temporomandibular joint (TMJ), which forms the back portion of the lower jaw and connects your jaw to your skull, is an anatomically complex and highly loaded structure consisting of cartilage and bone. About 10 million people in the United States alone suffer from TMJ dysfunction due to birth defects, trauma, or disease. Current treatments range from steroid injections that provide only a temporary pain relief, to surgical reconstructions using either prosthetic devices or donor tissue, and often fail to provide long-lasting repair. Researchers have sought a better way to treat TMJ, including investigating biological TMJ grafts grown in the lab that could integrate with the native tissues, remodel the joint over time, and provide life-long function for the patient.

Continue reading.

Skin-care product based on U of T Engineering research donated to health-care workers fighting COVID-19
Milica Radisic | October 13, 2020

Skin-care product based on U of T Engineering research donated to health-care workers fighting COVID-19
Milica Radisic | October 13, 2020

A U of T Engineering spinoff company has donated its entire stock of skin-care product to health-care workers fighting the global pandemic.

Several years ago, Professor Milica Radisic (BME, ChemE) and her team developed a peptide-hydrogel biomaterial that prompts skin cells to “crawl” toward one another. The material was initially designed to help close the chronic, non-healing wounds often associated with diabetes, such as bed sores and foot ulcers.

Continue reading.

UChicago researchers find way to improve multiple sclerosis treatment
Melody Swartz | October 12, 2020

UChicago researchers find way to improve multiple sclerosis treatment
Melody Swartz | October 12, 2020

Multiple sclerosis, an autoimmune disease of the central nervous system that affects millions worldwide, can cause debilitating symptoms for those who suffer from it.

Though treatments exist, researchers are still searching for therapies that could more effectively treat the disease, or even prevent it altogether.

Researchers at the Pritzker School of Molecular Engineering (PME) at the University of Chicago have designed a new therapy for multiple sclerosis (MS) by fusing a cytokine to a blood protein. In mice, this combination prevented destructive immune cells from infiltrating the central nervous system and decreased the number of cells that play a role in MS development, leading to fewer symptoms and even disease prevention.

Continue reading.

NAE announces winners of 2020 Simon Ramo Founders and Arthur M. Bueche Awards
Frances Ligler | October 2, 2020

NAE announces winners of 2020 Simon Ramo Founders and Arthur M. Bueche Awards
Frances Ligler | October 2, 2020

On Sunday, Oct. 4, during the 2020 annual meeting, the National Academy of Engineering (NAE) will present two awards for extraordinary impact on the engineering profession. The Simon Ramo Founders Award will be presented to Frances S. Ligler for her research contributions and leadership in engineering. The Arthur M. Bueche Award will be given to Arden L. Bement Jr. for his contributions to technology research, policy, and national and international cooperation.

Frances S. Ligler is the Ross Lampe Distinguished Professor of Biomedical Engineering in the Joint Department of Biomedical Engineering in the College of Engineering at North Carolina State University and the School of Medicine and College of Arts and Sciences at the University of North Carolina at Chapel Hill. Ligler is being recognized with the Simon Ramo Founders Award “for the invention and development of portable optical biosensors, service to the nation and profession, and educating the next, more diverse generation of engineers.” The award acknowledges outstanding professional, educational, and personal achievements to the benefit of society and includes a commemorative medal.

Continue reading.

Karen Moxon Leads $36M Effort to Improve Recovery From Spinal Cord Injuries
Karen Moxon | September 30, 2020

Karen Moxon Leads $36M Effort to Improve Recovery From Spinal Cord Injuries
Karen Moxon | September 30, 2020

Engineers at the University of California, Davis, will lead a consortium of universities, biomedical startups and nonprofit organizations to develop interventions for spinal cord injuries that can be applied within days of injury to improve long-term outcomes.

Karen Moxon, professor of biomedical engineering at UC Davis, will lead the five-year, $36 million contract as part of the Defense Advanced Research Project Agency, or DARPA, Bridging the Gap Plus Program. A primary goal is to develop technologies to stabilize a patient’s hemodynamic response, which includes blood flow and blood pressure, within days of injury.

Continue reading.

Vannevar Bush Award Given to Roderic Pettigrew, Innovator in Biomedicine and Technology
Roderic Pettigrew | September 28, 2020

Vannevar Bush Award Given to Roderic Pettigrew, Innovator in Biomedicine and Technology
Roderic Pettigrew | September 28, 2020

On September 28, 2020, the National Science Board (NSB) announced that Roderic Pettigrew will receive its prestigious Vannevar Bush Award. The award honors science and technology leaders who have made substantial contributions to the welfare of the nation through public service in science, technology and public policy.

“Roderic Pettigrew’s passion and creativity have spurred innovation in biomedicine,” said Victor McCrary, Vice Chair of the National Science Board and Chair of the 2020 NSB Honorary Awards Subcommittee. “His reimagining of healthcare solutions is helping converge science fields, narrowing gaps between disciplines in a way that really impacts society. Pettigrew is helping us to see what might be, what could be, and what is possible.”

Continue reading.

COVID test site differences, a fourth option in the works
Rebecca Richards-Kortum | September 24, 2020

COVID test site differences, a fourth option in the works
Rebecca Richards-Kortum | September 24, 2020

Rice’s Crisis Management Team plans to add a fourth and more rapid COVID-19 testing option on the Rice campus. Currently there are three sites that provide daily testing for asymptomatic students, staff and faculty who spend time on campus.

All three of these current sites (Abercrombie Engineering Laboratory, East Gym in the Tudor Fieldhouse and The Roost at Reckling Park) offer polymerase chain reaction testing. Bioengineering professor Rebecca Richards-Kortum said that her lab is working with the MD Anderson Cancer Center to develop a nucleic acid test for the fourth testing option.

Continue reading.

Introducing COVID19questions.org
Lucila Ohno-Machado | September 17, 2020

Introducing COVID19questions.org
Lucila Ohno-Machado | September 17, 2020

As the COVID-19 pandemic continues, there is an urgent need to determine who is at greatest risk for severe disease, better understand how the disease and treatments evolve, and predict the need for resources. But to get there, researchers and clinicians need more data about what patients have experienced so far, and what factors are associated with different patient outcomes.

To provide this information, a new research consortium invites clinicians, researchers, patients and the general public to submit questions that could be answered by COVID-19 patient record data from more than 200 participating hospitals. Questions are submitted and answers are provided via a new web portal: COVID19questions.org.

Continue reading.

Bone Cancer Treatment Potentially Improved by Soy
Susmita Bose | September 16, 2020

Bone Cancer Treatment Potentially Improved by Soy
Susmita Bose | September 16, 2020

Soy is widely studied for its estrogenic and anti-estrogenic effects on the body. It has been linked to a reduced risk of breast cancer and recurrence, improved heart and bone health, as well as the reduced risk of other cancers. Now researchers at Washington State University (WSU) see the potential of soy when it comes to improving post-operative treatment of bone cancer. They demonstrated the slow release of soy-based chemical compounds from a 3D-printed bone-like scaffold resulted in a reduction in bone cancer cells while building up healthy cells and reducing harmful inflammation.

Their findings, “Controlled release of soy isoflavones from multifunctional 3D printed bone tissue engineering scaffolds,” are published in the journal Acta Biomaterialia and led by graduate student Naboneeta Sarkar and Susmita Bose, PhD, professor at WSU’s School of Mechanical and Materials Engineering.

Continue reading.

Systemic equity in education
Gilda Barabino | September 11, 2020

Systemic equity in education
Gilda Barabino | September 11, 2020

Too often in higher education, the legacy of laws, policies, and practices that have systematically denied educational opportunities to Blacks is ignored, thereby perpetuating racial inequities. In the United States, higher education is a key route to career success and upward socioeconomic mobility. Unfortunately, this path is increasingly becoming most accessible to privileged communities. As the new president of Olin College of Engineering in Massachusetts, and as a woman of color, I am in a position to help unburden higher education from systemic racism and promote positive change that extends beyond academic boundaries.

Continue reading.

First Demonstration of Neuro Therapeutic Tropane Alkaloids Produced in Yeast
Christina Smolke | September 3, 2020

First Demonstration of Neuro Therapeutic Tropane Alkaloids Produced in Yeast
Christina Smolke | September 3, 2020

Researchers report the first successful microbial biosynthesis of the tropane alkaloids hyoscyamine and scopolamine, a class of neuromuscular blockers naturally found in plants in the nightshade family.

Describing a first-in-class fermentation-based approach for producing complex molecules, the paper lays the foundation for a controlled, flexible, cell-based manufacturing platform for essential medicines that currently rely on crop farming, according to research leader Christina Smolke, PhD, professor of bioengineering at Stanford University and CEO and co-founder of Antheia, a synthetic biology company making next-generation plant-inspired medicines.

Continue reading.

U of T Engineering researchers develop cell injection technique that could help reverse vision loss
Molly Shoichet | August 13, 2020

U of T Engineering researchers develop cell injection technique that could help reverse vision loss
Molly Shoichet | August 13, 2020

U of T Engineering researchers have developed a new method of injecting healthy cells into damaged eyes. The technique could point the way toward new treatments with the potential to reverse forms of vision loss that are currently incurable.

Around the world, millions of people live with vision loss due to conditions such as age-related macular degeneration (AMD) or retinitis pigmentosa. Both are caused by the death of cells in the retina, at the back of the eye.

Continue reading.

UChicago awarded $20 million to host COVID-19 medical imaging center
Maryellen Giger | August 7, 2020

UChicago awarded $20 million to host COVID-19 medical imaging center
Maryellen Giger | August 7, 2020

A new center hosted at the University of Chicago—co-led by the largest medical imaging professional organizations in the country—will help tackle the ongoing COVID-19 pandemic by curating a massive database of medical images to help better understand and treat the disease.

Led by Prof. Maryellen Giger of UChicago Medicine, the Medical Imaging and Data Resource Center (MIDRC) will create an open-source database with medical images from thousands of COVID-19 patients. The center will be funded by a two-year, $20 million contract from the National Institute of Biomedical Imaging and Bioengineering at the National Institutes of Health (NIH).

Continue reading.

Study Results from the UCSF Ci2 Suggest Deep Learning Methods Can Help Grade ACL Injuries
Sharmila Majumdar | July 29, 2020

Study Results from the UCSF Ci2 Suggest Deep Learning Methods Can Help Grade ACL Injuries
Sharmila Majumdar | July 29, 2020

Injuries to the anterior cruciate ligament (ACL) are very common, and ACL injuries increase the risk of developing post-traumatic knee osteoarthritis and total knee replacement (TKR). At present, Magnetic Resonance Imaging (MRI) is the most effective imaging modality for distinguishing structural properties of the ACL in relation to adjacent musculoskeletal structures. Several multi-grading scoring systems have been developed to standardize reporting of knee joint abnormalities using MRI including the Whole-Organ Magnetic Resonance Imaging Scale (WORMS) and the Anterior Cruciate Ligament OsteoArthritis Score (ACLOAS). However, both of these grading metrics are susceptible to inter-rater variability.

Deep learning methods have recently shown potential to serve as an aid for clinicians with limited time or experience in osteoarthritis grading of the knee menisci and cartilage. Recently a team of scientists from the UCSF Center for Intelligent Imaging (ci2) evaluated the diagnostic utility of two convolutional neural networks (CNNs) for severity staging of anterior cruciate ligament (ACL) injuries. “Previous studies have developed binary classifiers to distinguish fully torn ACLs from intact ACLs,” said Nikan Namiri, medical student at UCSF School of Medicine and corresponding author. “And our study is the first to take deep learning a step further to help classify a broader spectrum of injury, which may be more useful in the clinical setting.

Continue reading.

Rena Bizios to receive BioMedSA Award for health care, bioscience
Rena Bizios | July 29, 2020

Rena Bizios to receive BioMedSA Award for health care, bioscience
Rena Bizios | July 29, 2020

BioMedSA, the nonprofit corporation founded in 2005 to promote and grow San Antonio’s leading industry—health care and bioscience—will present its 2020 BioMedSA Award for Innovation in Healthcare and Bioscience to Rena Bizios, the Lutcher Brown Endowed Chair in UTSA’s Department of Biomedical Engineering.

Bizios is a globally recognized educator and researcher who has made pioneering contributions to biomedical engineering curricula as well as groundbreaking contributions to the understanding of cell-material interactions at the tissue/implant interface with applications in implant biomaterials, tissue engineering and tissue regeneration.

Continue reading.

Label-Free Autofluorescence Imaging Method Differentiates Between Active, and Off-Duty T Cells
Melissa Skala | July 28, 2020

Label-Free Autofluorescence Imaging Method Differentiates Between Active, and Off-Duty T Cells
Melissa Skala | July 28, 2020

Researchers headed by a team at the University of Wisconsin (UW)-Madison, and the Morgridge Institute for Research, have developed a novel label-free imaging technique that exploits autofluorescence in cells to differentiate between active and off-duty T cells, at the single cell level. They suggest the technology, known as autofluorescence lifetime imaging, could be used to help evaluate T cell involvement in immunotherapies for cancer treatment or autoimmune diseases. “It’s super novel,” said the Morgridge Institute’s Melissa Skala, PhD, who is also an associate professor of biomedical engineering at UW-Madison. “Most people aren’t using these techniques—you don’t see a lot of autofluorescence studies in immunology.”

Reporting on development and tests with the technology in Nature Biomedical Engineering, the researchers commented, “Autofluorescence lifetime imaging can be used to characterize T cells in vivo in preclinical models, in clinical applications including small blood samples (such as pediatric samples) in which antibody labeling is limited, or in cultured T cells, such as those used in biomanufactured T-cell therapies.” Their paper is titled, “Classification of T-cell activation via autofluorescence lifetime imaging.

Continue reading.

Engineering Better Medicine for Public Health Crises and the Future
Roderic Pettigrew | July 27, 2020

Engineering Better Medicine for Public Health Crises and the Future
Roderic Pettigrew | July 27, 2020

When my brother told me he had been diagnosed with COVID-19, I was scared. My memory immediately jumped to visions of his childhood struggles with asthma, which he described as having an ever-tightening chain around his chest. I thought of intubated COVID-19 patients at so many hospitals across the nation, and all of the patients who did not leave the hospitals alive. As we now know, African-American men like my brother are several times more likely to die from COVID-19 than someone who is white.

In my home state of Georgia, for example, 80 percent of all patients hospitalized due to COVID-19 in March 2020 were Black people. Nationally through June, American Indians, Native Alaskans, and Black people have had a hospitalization rate that is five times more than whites. For Hispanic people it is four times higher [2]. The compounding factors of increased rates of comorbidities, reduced access to care, limited resources inclusive of health guidance information, and even trust in mainstream medicine no doubt make these populations more vulnerable to a raging viral illness.

Continue reading.

Humanity binds us
Rod Pettigrew | July 24, 2020

Humanity binds us
Rod Pettigrew | July 24, 2020

Many were appalled by the Central Park incident where a woman used the ethnicity of a peaceful visitor and a 911 call in a failed effort to subjugate him based on his color. However, this incident was actually a service to the nation since it unveiled just how pervasive racism is in our society. As a majority person, she knew that this core racism is so systemic, and its actuation so predictable, that she could easily weaponize it. She knew there is an imbalance of power based purely on a trivial difference in skin tone. If ever there was a question about this attitude and behavior existing broadly in our society, the Central Park incident answered it. It exists, it is real, and it has resulted in multiple shocking deaths that the world has now witnessed in anguish.

When the death of Houstonian George Floyd was observed, his torture at the knee of a purveyor of this naked truth was just too much to bear. When George took his last breath, so did the national tolerance for the societal ill that took his life and the lives before him.

Continue reading.

Why Where You Live Can Impact Lung Health
Lydia Contreras | July 23, 2020

Why Where You Live Can Impact Lung Health
Lydia Contreras | July 23, 2020

It’s well known that poor air quality can lead to health problems. But research from Texas ChE faculty members Lydia Contreras and Lea Hildebrandt Ruiz uncovers new information about how air quality issues can affect important processes in the body and details how people who live in polluted areas could be at greater risk for lung disease and other illnesses.

The research, published this week in Communications Biology, examines how pollution disrupts cells’ ability to regulate themselves. The team found that when cells are exposed to a combination of pollutants typically present in congested urban areas, genetic mechanisms that lead to cholesterol production are disrupted and cells are damaged in ways not captured by traditional markers. That deregulation of cells transforms how they interact with each other, and those interactions are key to keeping cells healthy.

Continue reading.

Dee Providing Insight to New Biomedical Engineering Education Journal
Kay Dee | July 21, 2020

Dee Providing Insight to New Biomedical Engineering Education Journal
Kay Dee | July 21, 2020

Kay C Dee, associate dean of learning and technology and professor of biomedical engineering, is lending her expertise in cell and tissue engineering, biomaterials, and engineering education as an associate editor of the Biomedical Engineering Society’s new Biomedical Engineering Education journal.

This international journal presents articles on the practice and scholarship of education in bioengineering, biomedical engineering, and allied fields. It documents and shares advances in the field as educators support student learning. The journal also passes along valuable insight into research, teaching, novel course content, laboratory experiments and demonstrations, educational outreach, and advising and professional development.

Continue reading.

COVID-19 vaccine development and a potential nanomaterial path forward
Nicole Steinmetz | July 15, 2020

COVID-19 vaccine development and a potential nanomaterial path forward
Nicole Steinmetz | July 15, 2020

The COVID-19 pandemic has infected millions of people with no clear signs of abatement owing to the high prevalence, long incubation period and lack of established treatments or vaccines. Vaccines are the most promising solution to mitigate new viral strains. The genome sequence and protein structure of the 2019-novel coronavirus (nCoV or SARS-CoV-2) were made available in record time, allowing the development of inactivated or attenuated viral vaccines along with subunit vaccines for prophylaxis and treatment. Nanotechnology benefits modern vaccine design since nanomaterials are ideal for antigen delivery, as adjuvants, and as mimics of viral structures. In fact, the first vaccine candidate launched into clinical trials is an mRNA vaccine delivered via lipid nanoparticles. To eradicate pandemics, present and future, a successful vaccine platform must enable rapid discovery, scalable manufacturing and global distribution. Here, we review current approaches to COVID-19 vaccine development and highlight the role of nanotechnology and advanced manufacturing.

Continue reading.

Connecting donated human lungs to pigs repaired damage to the organs, scientists report
Gordana Vunjak-Novakovic | July 13, 2020

Connecting donated human lungs to pigs repaired damage to the organs, scientists report
Gordana Vunjak-Novakovic | July 13, 2020

For people who need a lung transplant, the wait is often prolonged by the frustrating fact that most donor organs have to be discarded: Only 20% of donated lungs meet medical criteria for transplantation, translating into far fewer organs than people on waiting lists. Now, a team of researchers has shown they might be able to salvage more of these lungs by borrowing a pig’s circulatory system.

Delicate lungs recovered from donors are typically connected to perfusion machines that keep oxygen and nutrients flowing to maintain viability, but that works for only about six hours, not long enough for often-injured lung tissue to recover before the organ fails.

Continue reading.

A urine test for lung cancer? Nanosensors make it possible
Sangeeta Bhatia | July 10, 2020

A urine test for lung cancer? Nanosensors make it possible
Sangeeta Bhatia | July 10, 2020

Harvard and MIT researchers teamed up to develop a novel screening test that could identify lung cancer a lot earlier and easier than current methods. The test detects lung cancer using nanoprobes, which send out reporter molecules that are picked up on urine analysis. This breakthrough, which is more sensitive than CT and delivers on a proof-of-concept experiment originally proposed in 2017, was recently detailed in a study published in Science Translational Medicine.

“What if you had a detector that was so small that it could circulate in your body, find the tumor all by itself, and send a signal to the outside world?” asked lead author Sangeeta Bhatia, MD, PhD, at a 2016 TED Talk. “It sounds a little like science fiction. But actually, nanotechnology allows us to do just that.

Continue reading.

Dr. Cato T. Laurencin’s COVID-19 Mask Solution Coming to Market
Cato Laurencin | July 2, 2020

Dr. Cato T. Laurencin’s COVID-19 Mask Solution Coming to Market
Cato Laurencin | July 2, 2020

Within six weeks of announcing a successful method to fabricate custom-fit mask frames to optimize protection from the spread of COVID-19, UConn has a licensing deal with a Connecticut manufacturer to produce them.

Connecticut Biotech, a startup company headquartered in South Windsor, aims to start marketing, manufacturing, and distributing 3D-printed mask frames under the brand Secure Fit this month.

“This is an important technology that can help a lot of people by providing a specific way to make regular surgical masks more protective,” says Dr. Cato T. Laurencin, CEO of the Connecticut Convergence Institute for Translation in Regenerative Engineering. “It’s wonderful to see technology that started here in the state of Connecticut being developed by a Connecticut company.

Continue reading.