RECOGNIZING EXCELLENCE
Awardees
-
2019 – National Academy of Medicine2021 – National Academy of Medicine2016 – National Academy of Medicine2021 – National Academy of Medicine2013 – National Academy of Sciences2009 – National Academy of Engineering2009 – National Academy of Medicine2018 Nobel Prize in Chemistry2008 – National Medal of Technology2000 NAE, 2004 NAM, 2008 NAS2017 – National Academy of Engineering2020 – National Academy of Medicine2019 – National Academy of Engineering2017 - AIMBE Pierre Galletti Award2020 - National Academy of Sciences2010 – National Academy of Engineering2019 – National Academy of Medicine2017 – National Academy of Sciences2015 – National Academy of Engineering2022 – National Academy of Engineering2015 – National Academy of Medicine2015 – National Academy of Engineering2016 – National Academy of Sciences1995 – National Academy of Medicine2012 – National Academy of Engineering2001 – National Academy of Medicine2019 – National Academy of Engineering2022 - Pierre Galletti Award2015 – National Academy of Engineering2014 – National Academy of Sciences2007 – National Academy of Medicine2018 – National Academy of Engineering2015 – National Academy of Medicine2018 – National Academy of Engineering2018 – National Academy of Medicine2014 – National Academy of Engineering2019 – National Academy of Medicine2010 – National Academy of Engineering2021 – National Academy of Medicine2011 – National Academy of Engineering2019 – National Academy of Sciences2017 – National Academy of Engineering2016 – National Academy of Medicine2022 – National Academy of Engineering2010 – National Academy of Medicine2012 – National Academy of Medicine2016 – National Academy of Medicine2021 – National Academy of Medicine2021 – National Academy of Sciences, 2011 Engineering, 2004 Medicine2014 – National Medal of Technology2009 – AIMBE Pierre Galletti Award2007 – National Academy of Engineering2018 – AIMBE Pierre Galletti Award2013 - National Academy of Engineering2018 – National Academy of Sciences2017 – National Academy of Engineering2005 – National Academy of Engineering2020 – National Academy of Engineering2020 – National Academy of Medicine2008 – National Academy of Medicine2015 – National Academy of Medicine2020 – National Academy of Engineering2015 - National Academy of Medicine2018 – National Academy of Medicine2013 - AIMBE Pierre Galletti Award2010 – National Academy of Engineering2007 – National Academy of Medicine2021 – National Academy of Sciences2004 – National Academy of Engineering2008 – National Academy of Medicine2022 – National Academy of Medicine2021 – National Academy of Medicine2016 – AIMBE Pierre Galletti Award2015 – National Academy of Sciences2008 – National Academy of Engineering2016 – National Academy of Engineering2019 – National Academy of Engineering2016 – National Academy of Engineering2021 – National Academy of Engineering2017 – National Academy of Engineering2019 – National Academy of Engineering2020 – National Academy of Medicine2008 – National Medal of Technology2004 – National Academy of Engineering2019 – National Academy of Engineering2019 – National Academy of Engineering2021 – AIMBE Pierre Galletti Award2014 – National Academy of Medicine2012 – National Academy of Engineering2016 – National Academy of Engineering2017 – National Academy of Medicine2018 – National Academy of Medicine
Early Trailblazers
Gilda Barabino, Ph.D.
Gilda Barabino is Dean and Berg Professor at The Grove School of Engineering at The City College of New York. She has appointments in Biomedical Engineering, Chemical Engineering and the Sophie Davis School of Biomedical Education/CUNY School of Medicine...Barbara Boyan, Ph.D.
Barbara D. Boyan, Ph.D., dean of VCU’s School of Engineering, is an acclaimed researcher and entrepreneur. Her laboratory focuses on research related to all aspects of bone and cartilage biology...Rena Bizios, Ph.D.
Professor Rena Bizios, a chemical/biomedical engineer by training, is the Lutcher Brown Chair Professor in the Department of Biomedical Engineering at the University of Texas at San Antonio, Texas...Linda Lucas, Ph.D.
Dr. Linda C. Lucas became provost of University of Alabama at Birmingham in April 2012 after serving in the interim role since May 2011. She served as dean of the School of Engineering from 2000 to 2011...Katherine Ferrara, Ph.D.
Dr. Katherine Ferrara was recruited to the Department of Radiology at Stanford University in 2018. Prior, Professor Ferrera spent years building and shaping the Biomedical Engineering Department at the...Banu Onaral, Ph.D.
Dr. Onaral is H. H. Sun Professor of Biomedical Engineering and Electrical Engineering at Drexel University, Philadelphia, PA. She holds a Ph.D. in Biomedical Engineering from the University...Janice Jenkins, Ph.D.
During her 22-year career at the University of Michigan, Janice Jenkins became known for her mentorship and for the fact that she was the first woman faculty member hired in the Electrical and Computer Engineering...Christina Enroth-Cugell, Ph.D.
Christina Alma Elisabeth Enroth-Cugell, emeritus professor of biomedical engineering and neurobiology, passed away June 15, 2016 at age 96. She was as a renowned vision scientist...Accurate integrated imaging and projection system for oral cancer diagnosis
Rebecca Richards-Kortum | January 19, 2023Accurate integrated imaging and projection system for oral cancer diagnosis
Rebecca Richards-Kortum | January 19, 2023Oral cancer is a globally prevalent disease with an astonishingly low five-year survival rate of less than 50%. A key factor for its poor prognosis is delayed diagnosis resulting in more late-stage oral cancers. At these later stages, treatment becomes less effective and harsher on the body. Hence, many scientists aim to develop and improve diagnostic techniques for the early detection of oral cancer. At present, the gold standard for the diagnosis of most oral cancers is biopsy of suspicious oral lesions and pathologic analysis of the extracted small amounts of tissue. However, it is extremely important that clinicians biopsy the areas within the abnormal lesion with the worst disease. Currently, the decision whether or not to perform a biopsy, and the optimal biopsy site, are based on clinical examination, which greatly depends upon the experience of the examining clinician. To help identify high-risk regions, clinicians can also use commercially available imaging techniques based on autofluorescence to detect abnormal tissue at the macroscopic level, although current autofluorescence technologies suffer from low specificity for neoplastic disease.
University of Toronto scientists use machine learning to fast-track drug formulation development
Christine Allen | January 10, 2023University of Toronto scientists use machine learning to fast-track drug formulation development
Christine Allen | January 10, 2023Scientists at the University of Toronto have successfully tested the use of machine learning models to guide the design of long-acting injectable drug formulations. The potential for machine learning algorithms to accelerate drug formulation could reduce the time and cost associated with drug development, making promising new medicines available faster.
The study was published today in Nature Communications and is one of the first to apply machine learning techniques to the design of polymeric long-acting injectable drug formulations.
Mechanism Behind Osteoarthritis Could Lead to New Treatments
Fabrisia Ambrosio | January 10, 2023Mechanism Behind Osteoarthritis Could Lead to New Treatments
Fabrisia Ambrosio | January 10, 2023Researchers in the United States and Japan have discovered a new mechanism that links age-related cartilage tissue stiffening with the repression of a key protein associated with longevity. These findings enhance the understanding of mechanisms that lead to the deterioration of joints that causes osteoarthritis, according to the authors of a new study, published January 10th in Nature Communications.
In the study, researchers showed that increased stiffening of the extracellular matrix – a network of proteins and other molecules that surround and support tissues in the body – led to a decrease in a so-called “longevity protein” called Klotho (α-Klotho) in knee cartilage brought about by epigenetic changes. This Klotho decrease then damaged the cells in healthy cartilage called chondrocytes. Conversely, exposing aged chondrocytes to a softer extracellular matrix restored the knee cartilage to a more youthful state.
Harriet Nembhard named president of Harvey Mudd College
Harriet Nembhard | December 6, 2022Harriet Nembhard named president of Harvey Mudd College
Harriet Nembhard | December 6, 2022Harriet Nembhard, dean of the University of Iowa’s College of Engineering, has been named president of Harvey Mudd College, a liberal arts college specializing in science, engineering, and mathematics located in Claremont, California.
Nembhard, who joined Iowa in June 2020, will begin her new position July 1. The UI will conduct a national search for Nembhard’s replacement.
“I congratulate Dean Nembhard and wish her the best of luck in her new role,” says Executive Vice President and Provost Kevin Kregel. “Under her leadership, the College of Engineering has continued to build upon its exceptional research reputation while advancing equity and inclusion in STEM education. She leaves the college in a strong position moving forward.
LaShanda Korley Appointed U.S. Science Envoy
LaShanda Korley | December 6, 2022LaShanda Korley Appointed U.S. Science Envoy
LaShanda Korley | December 6, 2022Esteemed engineer to travel the world to advance science and technology cooperation with U.S.
LaShanda Korley, Distinguished Professor of Materials Science and Engineering and Chemical and Biomolecular Engineering at the University of Delaware, has been appointed a U.S. Science Envoy for 2023. The announcement was made by the U.S. Department of State on Tuesday, Dec. 6.
Through the Science Envoy Program, eminent U.S. scientists and engineers leverage their expertise and networks to forge connections and identify opportunities for sustained international cooperation, championing innovation and demonstrating America’s scientific leadership and technical ingenuity.
What Can We Do to Combat Anti-Black Racism in the Biomedical Research Enterprise?
NIHWhat Can We Do to Combat Anti-Black Racism in the Biomedical Research Enterprise?
NIHThe recent deaths of George Floyd, Ahmaud Arbery, and Breonna Taylor, in addition to the disproportionate burden of COVID-19 on African Americans, are wrenching reminders of the many harms that societal racism, inequality, and injustice inflict on the Black community. These injustices are rooted in centuries of oppression—including slavery and Jim Crow, redlining, school segregation, and mass incarceration—that continue to influence American life, including the biomedical research enterprise. Despite leading an NIH Institute whose mission includes building a diverse scientific workforce, at NIGMS we’ve struggled with what an adequate response to this moment would be, knowing that the systems that mediate the distinct and disparate burdens Black students, postdocs, and scientists face are complex and often aren’t easily moved with the urgency that they demand. With that in mind, below we share thoughts on what each of us who is in the majority or in a position of power can do to help break the cycles of racial disparities that are woven into the fabric of the biomedical research enterprise and that limit opportunities Link to external web site for Black scientists Link to external web site.
Institutional structures, policies, and cultures Link to external web site, including those in the biomedical research enterprise, all contribute to racial inequality and injustice. This fact was laid bare for us by the responses to the request for information (RFI) we issued in 2018 on strategies to enhance successful postdoctoral career transitions to promote faculty diversity. Respondents cited bias and discrimination—including racism—most frequently as a key barrier to postdoctoral researchers attaining independent faculty positions.
Combating sexual harassment
ScienceCombating sexual harassment
ScienceSexual harassment, including gender harassment, presents an unacceptable barrier that prevents women from achieving their rightful place in science, and robs society and the scientific enterprise of diverse and critical talent. As the largest single funder of biomedical research in the world, the U.S. National Institutes of Health (NIH) bears a responsibility to take action to put an end to this behavior. In 2019, the NIH began to bolster its policies and practices to address and prevent sexual harassment. This included new communication channels to inform the agency of instances of sexual harassment related to NIH-funded research. This week, the NIH announces a change that will hold grantee institutions and investigators accountable for this misconduct, to further foster a culture whereby sexual harassment and other inappropriate behaviors are not tolerated in the research and training environment.
Last year, an Advisory Committee to the Director (ACD) of the NIH presented a report and recommendations to end sexual harassment. A major theme of this report was the need for increased transparency and accountability in the reporting of professional misconduct, especially sexual harassment. The cases of sexual harassment that surfaced in the wake of the U.S. National Academies of Sciences, Engineering, and Medicine (NASEM) 2018 report highlighted a substantial gap in the NIH’s oversight of the research enterprise: There was no straightforward mechanism for the agency to learn of sexual harassment or other misconduct taking place at grantee institutions in the context of NIH-funded research. It was not uncommon for the NIH to discover such cases through the media, amid rightful public outcry. Holding institutions and investigators accountable for this behavior was challenging.
White Academia: Do Better.
MediumWhite Academia: Do Better.
MediumOver the past couple of weeks, our nation has been confronted with ugly truths and hard history revealing how systemic racism rears its head in almost every space. Since the COVID-19 pandemic has slowed down our typical lifestyles, people seem to be listening.
This moment feels very different from other situations when we had to address human rights in the context of race relations in the United States. With that comes a host of emotions that White people have rarely had to deal with because of their racial privilege, and this includes White people working in academia.
Like many Black faculty, and Black people in general, I have received messages and texts from White colleagues apologizing, expressing their guilt and remorse, and asking what they can do to support their Black colleagues and friends.
Guidelines for Diversity & Inclusion in Crisis
Juan E. Gilbert, PhDGuidelines for Diversity & Inclusion in Crisis
Juan E. Gilbert, PhDI am writing these guidelines in response to the recent events that have impacted the Black community, specifically, the Black computing community. As the Department Chair of the Computer & Information Science & Engineering (CISE) Department at the University of Florida, I lead, one of, if not, the nation’s most diverse computing sciences (CS) department. We have the nation’s most Black CS faculty and PhD students. We are one of the top CS departments for the number of female faculty. As a researcher, I have had the honor of producing the nation’s most Black/African-American CS PhDs. I have also had the honor of hiring and promoting the most Black faculty in CS. My experiences span more than 20 years and those experiences are the foundation for these guidelines.
Scientists around the world are striking against racism in academia
New ScientistScientists around the world are striking against racism in academia
New ScientistScientists around the world are striking to raise awareness of institutional and systemic racism against Black academics. This event comes in conjunction with widespread protests against police violence after the killing of George Floyd, who died on 25 May after a Minneapolis police officer pinned him to the ground by his neck.
The strike was organised by a group of academics, many of them physicists and astronomers based in the US, and promoted on social media with the hashtags #ShutDownAcademia, #ShutDownSTEM and #Strike4BlackLives. The organisers are encouraging academics across STEM (science, technology, engineering and mathematics) fields to take the day away from their normal research and instead spend it educating themselves on racial disparities in their field and taking action against racial violence and discrimination. At least 5000 academics based at universities from around the world have joined the course.
“As academics, we do not exist in a vacuum and it is important to recognise the current events: Black members of our communities are being harassed and lynched with little to no consequence, as well as being disproportionately affected by the current pandemic,” says Tien-Tien Yu, a particle physicist at the University of Oregon who has helped organise the event through the Particles for Justice group. “We need to acknowledge that this takes a toll on the well-being of Black academics and that Black Lives Matter.