Engineering Diversity

Author Archive

New technique bioprints live cells inside the body using ultrasonic waves
Shulamit Levenberg | May 9, 2024

Revolutionary acousto-printing method can be used to circumvent invasive surgery, and has a wide array of potential applications.

A new drug delivery and tissue implantation technique utilizing ultrasound waves as an alternative to surgery has been developed in the Stem Cell and Tissue Engineering Lab of Prof. Shulamit Levenberg at the Technion-Israel Institute of Technology.

The technique allows for bioprinting live cells and tissues deep within the body using external soundwave irradiation.

Researchers Engineer Yeast to Deliver Drugs, Reduce Inflammation for Possible Inflammatory Bowel Disease Treatment
Juliane Nguyen | May 7, 2024

Inflammatory bowel disease (IBD) is a complex condition that requires individualized care to meet the needs of the patient’s current disease state. With available medications sometimes causing serious side effects or losing their efficacy over time, many researchers have been exploring new, more targeted ways of delivering medications or other beneficial compounds, such as probiotics.

To address pitfalls in IBD treatment and drug delivery, the labs of Juliane Nguyen, PhD, professor and vice chair of pharmacoengineering and molecular pharmaceuticals at the UNC Eshelman School of Pharmacy, and Janelle Arthur, PhD, associate professor of microbiology and immunology at the UNC School of Medicine, have developed a genetically engineered probiotic strain of Saccharomyces boulardii.

Stretchable skin could give caregiving robots a more human touch
Nanshu Lu | May 6, 2024

Newly developed stretchable electronic skin soon might give robots and other devices the same softness and touch sensitivity as human skin. This could prove especially promising for care of the aging, where a soft touch can make a huge difference.

The new stretchable e-skin was developed by researchers at the University of Texas at Austin.

“Much like human skin has to stretch and bend to accommodate our movements, so too does e-skin,” said Nanshu Lu, PhD, a professor in the Cockrell School of Engineering’s Department of Aerospace Engineering and Engineering Mechanics who led the project. “No matter how much our e-skin stretches, the pressure response doesn’t change, and that is a significant achievement.

An electrifying discovery may help doctors deliver more effective gene therapies
Susan Hagness | April 30, 2024

In an effort to improve delivery of costly medical treatments, a team of researchers in electrical engineering at the University of Wisconsin–Madison has developed a stimulating method that could make the human body more receptive to certain gene therapies.

The researchers exposed liver cells to short electric pulses — and those gentle zaps caused the liver cells to take in more than 40 times the amount of gene therapy material compared to cells that were not exposed to pulsed electric fields. The method could help reduce the dosage needed for these treatments, making them much safer and more affordable. The research appears April 30 in the journal PLOS ONE.

Circadian rhythms can influence drugs’ effectiveness
Sangeeta Bhatia | April 24, 2024

MIT researchers find circadian variations in liver function play an important role in how drugs are broken down in the body.

Giving drugs at different times of day could significantly affect how they are metabolized in the liver, according to a new study from MIT.

Using tiny, engineered livers derived from cells from human donors, the researchers found that many genes involved in drug metabolism are under circadian control. These circadian variations affect how much of a drug is available and how effectively the body can break it down. For example, they found that enzymes that break down Tylenol and other drugs are more abundant at certain times of day.

Engineered Peptides Stimulate Antitumor Immune Responses in Mice
Betty Kim | April 22, 2024

Researchers have designed a new method for developing immunotherapy drugs using engineered peptides to elicit a natural immune response inside the body. More specifically, they showed, in antigen presenting cells, that “the hydrophobicity, electrostatic charge, and secondary conformation of helical polypeptides can be optimized to stimulate innate immune pathways via endoplasmic reticulum stress.”

In preclinical models of locally advanced and metastatic breast cancer, this method improved tumor control and prolonged survival, both as a monotherapy and in combination with immune checkpoint inhibitors.

Deep learning model detects COVID-19 infection using lung imaging
Bisi Bell | March 26, 2024

A deep neural network-based automated detection tool could assist emergency room clinicians in diagnosing COVID-19 effectively using lung ultrasound images.

Johns Hopkins researchers have developed a deep learning-based model to detect COVID-19 infection using lung ultrasound images, according to a study published recently in Communications Medicine.

The automated detection tool uses deep neural networks (DNNs) to identify COVID-19 features in lung ultrasound B-mode images and may help clinicians diagnose emergency department patients more efficiently.

This implant will tell a smartphone app when you need to pee
Guillermo Ameer | March 25, 2024

The stretchy, wireless sensor could keep patients with bladder issues informed in real-time.

For people dealing with spina bifida, paralysis, and various bladder diseases, determining when to take a bathroom break can be an issue. To help ease the frequent stress, researchers at Northwestern University have designed a sensor array that attaches to the bladder’s exterior wall, enabling it to detect its fullness in real time. Using embedded Bluetooth technology, the device then transmits its data to a smartphone app, allowing users to monitor their bodily functions without far less discomfort and guesswork.

The new tool, detailed in a study published today in the Proceedings of the National Academy of Sciences (PNAS), isn’t only meant to prevent incontinence issues. Lacking an ability to feel bladder fullness extends far beyond the obvious inconveniences—for millions of Americans dealing with bladder dysfunctions, not knowing when to go to the bathroom can cause additional organ damage such as regular infections and kidney damage. To combat these issues, the new medical device mirrors the bladder’s own elasticity.

A lung-mimicking sealant helps repair surgical leaks
Gordana Vunjak-Novakovic | March 12, 2024

A superior surgical sealant mimics the structural and mechanical properties of lung tissue to repair air leaks after surgery.

A new sealant meant to mimic lung tissue has been shown to rapidly cork air leaks following surgery. Moreover, the protein-like molecules within the sealant were found to potentially help with wound repair.

“Our lung-mimetic sealant is designed with a structure similar to that of the healthy lung, allowing the sealant to deform in a similar way as the breathing lung,” explained Meghan Pinezich, researcher at Columbia University in the US, and first author on the study, in an email.

How AI-powered handheld devices are boosting disease diagnostics – from cancer to dermatology
Irving Bigio | March 12, 2024

In the past, artificial intelligence (AI) in healthcare was mostly in the hands of specialists — experts in marrying supercomputers to hefty hospital devices. Now, thanks to a new breed of compact, handheld AI-assisted disease-detection devices, that is changing. Healthcare AI is increasingly in the hands (and the pockets) of non-specialists.

Lightweight, battery-powered handheld healthcare AI devices made a splash in January 2024 with the arrival of a portable device for detecting skin cancer. Approved for marketing by the US Food and Drug Administration (FDA) under the brand name DermaSensor, the device looks like an oversized cellphone. It is approved for use solely by physicians, and only in patients over 40 years of age, to help in the evaluation of skin lesions suggestive of three types of skin cancer: melanoma, basal cell carcinoma and squamous cell carcinoma.

Metal-Organic Nanoparticles Enable Better Vaccine Delivery, Stronger Immune Response
Ana Jaklenec | March 6, 2024

Scientists from the Massachusetts Institute of Technology (MIT) and elsewhere have published a paper in Science Advances that describes a type of nanoparticle for delivering vaccines called a metal organic framework (MOF) that can potentially provoke a strong immune response at lower doses. The paper is titled “Zeolitic Imidazolate Frameworks Activate Endosomal Toll-like Receptors and Potentiate Immunogenicity of SARS-CoV-2 Spike Protein Trimer.”

In the study, which was done in mice, the researchers showed that the MOF successfully encapsulated and delivered part of the SARS-CoV-2 spike protein while simultaneously acting as an adjuvant once it broke down inside cells. More work is needed to ensure that the particles can be used safely in human vaccines, but these early results are promising.

AI Predicts Alzheimer’s Disease Risk Seven Years in Advance
Marina Sirota | February 25, 2024

AI enables precision medicine with early detection of Alzheimer’s disease risk.

Researchers at the University of California, San Francisco (UCSF) recently developed an AI algorithm that can identify patients at risk for developing Alzheimer’s disease up to seven years in advance, according to a study published last week in Nature Aging.

The researchers reported that their AI models predicted Alzheimer’s disease up to seven years in advance with 72% accuracy.

The predictive capabilities of artificial intelligence (AI) machine learning are enabling disease prediction and accelerating precision medicine in an effort to improve patient outcomes. Alzheimer’s disease (AD), an incurable neurodegenerative disease, is the most common form of dementia.

DNA Melting Curves Could Speed Blood-Borne Pathogen Detection
Stephanie Fraley | February 21, 2024

Scientists from the University of California, San Diego (UCSD), and elsewhere have described a method of detecting blood-borne pathogens faster and more accurately than traditional blood cultures. The method, called digital DNA melting analysis, produces results in under six hours, much shorter than traditional cultures which can require 15 hours to several days depending on the pathogen.

Details of the method and results from a clinical pilot using blood samples from pediatric patients are provided in the Journal of Molecular Diagnostics in a paper titled, “Universal digital high resolution melt analysis for the diagnosis of bacteremia.” Results from the pilot study showed that their DNA melting approach matched results of blood cultures collected for sepsis testing. They were also able to quantify how much of the pathogen was present in the samples using DNA melting.

Christine Schmidt elected to National Academy of Engineering
Christine Schmidt | February 8, 2024

The National Academy of Engineering has elected UF Distinguished Professor Christine Schmidt, Ph.D., to the academy for 2024 in recognition of her more than 25 years of work to help advance the fields of neural tissue engineering and wound healing and for her leadership in diversifying bioengineering.

Election to the academy is among the highest professional distinctions bestowed upon an engineer, honoring those who have made outstanding contributions to engineering research and private industry. Schmidt, the Pruitt Family Chair in the J. Crayton Pruitt Family Department of Biomedical Engineering, is focused on creating novel materials and therapeutic systems aimed at wound healing and rebuilding peripheral and spinal nerves damaged by injuries.

Desai named to National Academy of Engineering
Tejal Desai | February 7, 2024

Brown Engineering Dean receives one of the highest professional honors accorded an engineer.

The National Academy of Engineering (NAE) has elected Brown University Sorensen Family Dean of Engineering Tejal A. Desai to its newest membership class, honoring her distinguished contributions to engineering, “for nanofabricated materials to control biologics delivery, and leadership in the fields of nanotechnology and regenerative medicine.” Membership in the NAE is considered one of the highest professional honors accorded an engineer and Desai’s selection brings to six the number of current Brown faculty members in the NAE.

“I am deeply honored by this recognition, and am grateful for all my colleagues and trainees who have supported me over my career,” said Desai.

National Academy of Engineering Elects Gargi Maheshwari, Ph.D.
Gargi Maheshwari | February 6, 2024

National Academy of Engineering Elects 114 Members and 21 International Members

The National Academy of Engineering (NAE) has elected 114 new members and 21 international members, announced NAE President John L. Anderson today. This brings the total U.S. membership to 2,310 and the number of international members to 332.

Election to the National Academy of Engineering is among the highest professional distinctions accorded to an engineer. Academy membership honors those who have made outstanding contributions to “engineering research, practice, or education, including, where appropriate, significant contributions to the engineering literature” and to “the pioneering of new and developing fields of technology, making major advancements in traditional fields of engineering, or developing/implementing innovative approaches to engineering education.” Election of new NAE members is the culmination of a yearlong process. The ballot is set in December and the final vote for membership occurs during January.

Individuals in the newly elected class will be formally inducted during the NAE’s annual meeting on Sept. 29, 2024. A list of the new members and international members follows, with their primary affiliations at the time of election and a brief statement of their principal engineering accomplishments.

Maheshwari, Gargi, vice president, Biologics Development, Bristol Myers Squibb, Blue Bell, Pa. For industrial bioprocessing, leading to licensure of biologics and vaccines for human health.

Nancy Allbritton elected to National Academy of Engineering
Nancy Allbritton | February 6, 2024

Nancy Allbritton, the dean of the University of Washington College of Engineering and a UW professor of bioengineering, has been elected to the National Academy of Engineering, the academy announced Feb. 6.

Allbritton was selected “for innovation and commercialization of single-cell, analytical, and gut-on-chip technologies for drug screening and for engineering education.”

Drawing from the fields of engineering, chemistry, physics and materials science, Allbritton’s research develops technologies and platforms for biomedical research and clinical care, including the study and analysis of single cells for the treatment of a variety of diseases such as cancer, macular degeneration and HIV.

Metastatic breast cancer treatments have aided decline in deaths, Stanford Medicine-led study finds
Sylvia Plevritis | January 17, 2024

Deaths from breast cancer dropped 58% between 1975 and 2019 due to a combination of screening mammography and improvements in treatment, according to a new multicenter study led by Stanford Medicine clinicians and biomedical data scientists.

Nearly one-third of the decrease (29%) is due to advances in treating metastatic breast cancer —a form that has spread to other areas of in the body and is known as stage 4 breast cancer or recurrent cancer. Although these advanced cancers are not considered curable, women with metastatic disease are living longer than ever.

The analysis helps cancer researchers assess where to focus future efforts and resources.

Injectable hydrogel electrodes open door to a novel painless treatment regimen for arrhythmia
Elizabeth Cosgriff-Hernandez | January 9, 2024

A breakthrough study led by Dr. Mehdi Razavi at The Texas Heart Institute (THI), in collaboration with a biomedical engineering team of The University of Texas at Austin (UT Austin) Cockrell School of Engineering led by Dr. Elizabeth Cosgriff-Hernandez, sets the foundation of a ground-breaking treatment regimen for treating ventricular arrhythmia. Their study published in Nature Communications demonstrates the design and feasibility of a new hydrogel-based pacing modality.

The urgent need for an effective therapeutic regimen for ventricular arrhythmia inspired THI’s Electrophysiology Clinical Research & Innovations (EPCRI) team, led by its director, Dr. Razavi, to partner with Dr. Cosgriff-Hernandez and her UT Austin Biomedical Engineering (UT Austin BME) team to co-develop an innovative strategy that addresses the pathophysiology of re-entrant arrhythmia.

Inhalable sensors could enable early lung cancer detection
Sangeeta Bhatia | January 5, 2024

The diagnostic, which requires only a simple urine test to read the results, could make lung cancer screening more accessible worldwide.

Using a new technology developed at MIT, diagnosing lung cancer could become as easy as inhaling nanoparticle sensors and then taking a urine test that reveals whether a tumor is present.

The new diagnostic is based on nanosensors that can be delivered by an inhaler or a nebulizer. If the sensors encounter cancer-linked proteins in the lungs, they produce a signal that accumulates in the urine, where it can be detected with a simple paper test strip.

Next-Generation Wearable Technologies
Jill Higginson | December 19, 2023

UD engineers are researching and refining innovative nanomaterial-based sensors for human health applications

From keeping us warm and dry during a downpour to showcasing our Blue Hen spirit at Homecoming, clothing is essential for our comfort, protection and self-expression. But what if our clothing could do even more — what if, for example, our clothes could collect real-time data and provide feedback that could aid our recovery after an accident or surgery, or monitor our form or body posture during exercise and sports to prevent injury?

At the University of Delaware, a team of researchers from the College of Engineering has developed nanomaterial sensors that can measure precise changes in human movement while being both comfortable and cost effective. Now, thanks to funding from the National Science Foundation’s (NSF) Partnerships for Innovation (PFI) program, the team will continue studying these innovative materials while collaborating with industry partners to explore new commercial opportunities in health-related applications.

Kuhn Develops Patent-Pending Process to Create Comfortable Prosthetics for Breast Cancer Survivors
Liisa Kuhn | December 14, 2023

University of Connecticut Professor of Biomedical Engineering Liisa Kuhn credits Willy Wonka’s Everlasting Gobstopper for inspiring her work on designing bone grafts, growth plate repair gel—and most recently—breast prosthetics.

“The Gobstopper candy has all these layers, and each layer lets them experience a different course of a meal,” says Kuhn, who has a dual appointment with the School of Dental Medicine and the College of Engineering. “Similarly, in my own research, I’m working with multilayered structures that provide timed release of multiple factors to improve bone and cartilage healing.”

Guillermo A. Ameer Elected a Biomaterials Science and Engineering Fellow
Guillermo Ameer | December 7, 2023

With his election, Ameer joins a group of fewer than 500 biomaterials scientists worldwide

Northwestern Engineering’s Guillermo A. Ameer has been elected a Fellow of Biomaterials Science and Engineering (FBSE) by the International Union of Societies for Biomaterials Science and Engineering (IUSBSE), the highest honor the global biomaterials community can bestow on outstanding scientists. With his election, Ameer joins a group of fewer than 500 biomaterials scientists worldwide who have been named a FBSE.

Ameer will be formally inducted May 27 at the World Biomaterials Congress in Daegu, South Korea. Fellowships recognize those who have gained a status of excellent professional standing and high achievements in the field of biomaterials science and engineering.

MIT’s Tiny Technologies Go to Washington
Ana Jaklenec | December 4, 2023

Cancer nanomedicine showcased at the White House Demo Day

On November 7, a team from the Marble Center for Cancer Nanomedicine showed a Washington D.C. audience several examples of how nanotechnologies developed at MIT can transform the detection and treatment of cancer and other diseases.

The team was one of 40 innovative groups featured at “American Possibilities: A White House Demo Day.” Technology on view spanning energy, artificial intelligence, climate, and health, highlighting advancements that contribute to building a better future for all Americans.

Low-dose CT screening can catch lung cancer early – but most people overlook it
Denise Aberle | November 8, 2023

CT was shown to be the first and most effective way of reducing lung cancer mortality,’ says UCLA Health’s Dr. Denise Aberle.

Most people at greatest risk of lung cancer are overlooking a non-invasive screening that can detect cases early, when treatment can best save lives.

November marks Lung Cancer Awareness Month and UCLA Health lung cancer experts are working to spread the word about the importance of low-dose computed tomography (LDCT) of the chest. The annual scan is recommended for people with a long-term history of smoking, as well as other criteria, including age.

The screening is designed to find asymptomatic cancers when they are most treatable with surgery or radiation. It also allows doctors to monitor any suspicious findings over time.

Anesthesia technology precisely controls unconsciousness in animal tests
Emery Brown | November 7, 2023

An advanced closed-loop anesthesia delivery system that monitors brain state to tailor propofol dose and achieve exactly the desired level of unconsciousness could reduce post-op side effects.

If anesthesiologists had a rigorous means to manage dosing, they could deliver less medicine, maintaining exactly the right depth of unconsciousness while reducing postoperative cognitive side effects in vulnerable groups like the elderly. But with myriad responsibilities for keeping anesthetized patients alive and stable as well as maintaining their profoundly unconscious state, anesthesiologists don’t have the time without the technology.

To solve the problem, researchers at The Picower Institute for Learning and Memory at MIT and Massachusetts General Hospital (MGH) have invented a closed-loop system based on brain state monitoring that accurately controls unconsciousness by automating doses of the anesthetic drug propofol every 20 seconds.

Advancing ultrasound microvessel imaging and AI to improve cancer detection
Azra Alizad | October 21, 2023

Ultrasound—a technology that uses sound waves to produce an image—is commonly used to monitor the development of a baby as it grows inside its mother. But ultrasound imaging also can be used to investigate suspicious masses of tissue and nodules that may be cancerous.

Tumors consist not only of cancer cells but also a matrix of small blood vessels, or microvessels, that cannot be seen in the images produced by conventional ultrasound machines. To solve this problem, physician-scientist Azra Alizad, M.D., and biomedical engineering scientist Mostafa Fatemi, Ph.D., teamed up at Mayo Clinic to design and study a tool that may improve the resolution of ultrasound imaging.

Immunotherapy Response in Glioblastoma Induced by mRNA Delivered by Extracellular Vesicles
Betty Kim | October 20, 2023

Investigators at the University of Texas MD Anderson Cancer Center has developed a potentially groundbreaking method for enhancing immunotherapy responses in glioblastoma by using extracellular vesicles loaded with messenger RNA (mRNA). This new approach, detailed in Nature Communications, has solved some of the hurdles faced by mRNA-based therapy approaches for cancer and could lead to wider use of these therapies across a range of hard-to-treat tumor types.

The new approach for mRNA delivery builds on research from a team at MD Anderson led by Betty Kim, MD, PhD, and Wen Jiang, MD, PhD, who developed a novel method earlier this year of loading mRNA into extracellular vesicles and demonstrates the anti-tumor potential of this method of therapeutic delivery. Researchers have known for some time the therapeutic potential of mRNA to fight both infectious diseases and cancer. But methods to deliver it accurately to where it is needed has been a challenge, with various other potential delivery method studied previously including via lipid polymeric nanoparticles.

Curbing Lung Cancer Metastasis with Nanoparticle Vaccine
Nicole Steinmetz | October 11, 2023

Scientists at the University of California (UC), San Diego, have developed an experimental vaccine that could curb the spread of metastatic cancers to the lungs. The key ingredients of the vaccine are nanoparticles that have been engineered to target a protein known to play a central role in cancer growth and spread. The vaccine significantly reduced the spread of metastatic breast and skin cancers to the lungs in mice. It also improved the survival rate in mice with metastatic breast cancer after surgical removal of the primary tumor.

The findings were published in the Proceedings of the National Academy of Sciences in an article titled, “Viral nanoparticle vaccines against S100A9 reduce lung tumor seeding and metastasis.”

Restoring nerve-muscle connections boosts strength of aging mice, Stanford Medicine study finds
Helen Blau | October 11, 2023

A drug that boosts strength in injured or aging mice restores connections between nerves and muscle and suggests ways to combat weakness in humans due to aging, injury or disease.

A small molecule previously shown to enhance strength in injured or old laboratory mice does so by restoring lost connections between nerves and muscle fibers, Stanford Medicine researchers have found.

The molecule blocks the activity of an aging-associated enzyme, or gerozyme, called 15-PGDH that naturally increases in muscles as they age. The study showed that levels of the gerozyme increase in muscles after nerve damage and that it is prevalent in muscle fibers of people with neuromuscular diseases.

The research is the first to show that damaged motor neurons — nerves connecting the spinal cord to muscles — can be induced to regenerate in response to a drug treatment and that lost strength and muscle mass can be at least partially regained. It suggests that, if similar results are seen in humans, the drug may one day be used to prevent muscle loss of muscle strength due to aging or disease or to hasten recovery from injury.

Regina Barzilay elected to the National Academy of Medicine for 2023
Regina Barzilay | October 10, 2023

The National Academy of Medicine announced the election of 100 new members to join their esteemed ranks in 2023, among them five MIT faculty members and seven additional affiliates.

MIT professors Daniel Anderson, Regina Barzilay, Guoping Feng, Darrell Irvine, and Morgen Shen were among the new members. Justin Hanes PhD ’96, Said Ibrahim MBA ’16, and Jennifer West ’92, along with three former students in the Harvard-MIT Program in Health Sciences and Technology (HST) — Michael Chiang, Siddhartha Mukherjee, and Robert Vonderheide — were also elected, as was Yi Zhang, an associate member of The Broad Institute of MIT and Harvard.

Election to the academy is considered one of the highest honors in the fields of health and medicine and recognizes individuals who have demonstrated outstanding professional achievement and commitment to service, the academy noted in announcing the election of its new members.

Tumor-destroying sound waves receive FDA approval for liver treatment in humans
Zhen Xu | October 9, 2023

The U.S. Food and Drug Administration has approved the use of sound waves to break down tumors—a technique called histotripsy—in humans for liver treatment.

Pioneered at the University of Michigan, histotripsy offers a promising alternative to cancer treatments such as surgery, radiation and chemotherapy, which often have significant side effects. Today, FDA officials awarded clearance to HistoSonics, a company co-founded in 2009 by U-M engineers and doctors for the use of histotripsy to destroy targeted liver tissue.

A human trial underway since 2021 at the U-M Rogel Cancer Center and other locations has treated patients with primary and metastatic liver tumors via histotripsy, demonstrating the technology’s ability to meet the testing’s primary effectiveness and safety targets.

Dean Jennifer L. West Elected to the National Academy of Medicine
Jennifer West | October 9, 2023

Jennifer L. West, Ph.D., Dean of the School of Engineering and Applied Science at the University of Virginia, has been elected to the prestigious NATIONAL ACADEMY OF MEDICINE, one of the highest recognitions in health and medicine. The National Academy of Medicine is one of three institutions that make up the National Academies, operating under an 1863 Congressional charter signed by President Lincoln to assemble experts to advise the nation in science and technology.

“It is my honor to welcome this truly exceptional class of new members to the National Academy of Medicine,” said NAM President Victor J. Dzau. “Their contributions to health and medicine are unparalleled, and their leadership and expertise will be essential to helping the NAM tackle today’s urgent health challenges, inform the future of health care, and ensure health equity for the benefit of all around the globe.

The cactus chemist: Dr. Norma Alcantar
Norma Alcantar | September 5, 2023

Among the typical things you’d expect to find in a chemical engineer’s office — honorary awards, patent plaques, and books like “Environmental Analytical Chemistry” and “Introducing Chemical Engineering Thermodynamics” — Dr. Norma Alcantar’s office at the University of South Florida (USF) also showcases her love of life and teaching with books like “Intentional Integrity,” a coffee mug that reads “the influence of a good teacher can never be erased,” and a decorative plaque that reads “It’s All Gonna Be Fine.”

But hidden between the intellectual and inspirational materials, two sets of objects stand out: a series of cacti and owl collectibles. To the uninitiated, they appear to be whimsical office décor, but to those who know Alcantar, the folklore wisdom of the owl and the hardy, but elegantly designed cacti plant represent the tapestry of her life and career.

Engineered Proteins Take On Cancer’s Epigenome
Karmella Haynes | August 24, 2023

In addition to characterizing the genetic basis for different cancers, scientists are increasingly interested in the role of the epigenome in tumor development, and possible therapies that can target genes repressed by chemically modifying chromatin in cancer.

Part of what makes the epigenome an attractive target is the possibility of hitting a system of proteins involved in gene expression programming rather than a single target, according to Karmella Haynes, PhD, an assistant professor of biomedical engineering at Emory University. She and a team of scientists from Emory University and Georgia Institute of Technology have developed another potential approach for reactivating repressed tumor suppressor genes that could ultimately have implications for how solid tumors like triple-negative breast cancer (TNBC) are treated.

Ameer Wins 2023 Excellence in Biomaterials Science Award
Guillermo Ameer | August 23, 2023

The award recognizes an individual who has made significant contributions to the science of biomaterials

Northwestern Engineering’s Guillermo A. Ameer has been elected the winner of the 2023 Excellence in Biomaterials Science Award, an honor given by the Surfaces in Biomaterials Foundation (SIBF).

The award, the highest given by the foundation, recognizes an individual who has made significant contributions to the biomaterials science field. Previous winners include Moderna cofounder Robert Langer (2020) and the late Northwestern professor Richard Van Duyne (1991).

Transforming flies into degradable plastics
Karen Wooley | August 14, 2023

Imagine using insects as a source of chemicals to make plastics that can biodegrade later — with the help of that very same type of bug. That concept is closer to reality than you might expect. Today, researchers will describe their progress to date, including isolation and purification of insect-derived chemicals and their conversion into functional bioplastics.

The researchers will present their results at the fall meeting of the American Chemical Society (ACS). ACS Fall 2023 is a hybrid meeting being held virtually and in-person Aug. 13–17, and features about 12,000 presentations on a wide range of science topics.

“For 20 years, my group has been developing methods to transform natural products — such as glucose obtained from sugar cane or trees — into degradable, digestible polymers that don’t persist in the environment,” said Karen Wooley, PhD, the project’s principal investigator.

Deep learning unlocks personalised cancer therapy
Rachel Karchin | August 14, 2023

Engineers and cancer researchers have harnessed the power of machine learning technology to predict immune-boosting proteins.

Machine learning technology developed by a team of Johns Hopkins engineers and cancer researchers can accurately predict cancer-related protein fragments that may trigger an immune system response.

If validated in clinical trials, the technology could help scientists overcome a major hurdle to developing personalised immunotherapies and vaccines.

In a new study, investigators from Johns Hopkins Biomedical Engineering, the Johns Hopkins Institute for Computational Medicine, the Johns Hopkins Kimmel Cancer Center and the Bloomberg~Kimmel Institute for Cancer Immunotherapy show that their deep learning method, called BigMHC, can identify protein fragments on cancer cells that elicit a tumour cell-killing immune response, an essential step in understanding response to immunotherapy and in developing personalised cancer therapies.

New DNA Identification Approach Could Improve Monitoring for Chronic Diseases
Shana Kelley | July 26, 2023

Investigators led by Shana Kelley, PhD, the Neena B. Schwartz Professor of Chemistry, Biomedical Engineering, and of Biochemistry and Molecular Genetics, have developed a novel approach for identifying sequences of artificial DNA with differing levels of binding to other small molecules.

The approach, detailed in a study published in Nature Chemistry, could help improve the efficiency of diagnostic monitoring for patients with chronic diseases.

Aptamers are sequences of artificial DNA that selectively bind to other small molecules such as peptides, carbohydrates and foreign pathogens. Aptamers can be used for therapeutic purposes in the same way as monoclonal antibodies, and have been used for pathogen and cancer recognition as well as stem cell markers.

Study optimizes patient-specific stem cell-based therapy for Parkinson’s disease
Jeanne Loring | July 19, 2023

The discovery by scientists from Scripps Research and Cardiff University paves the way for clinical trials that use patients’ own cells to treat Parkinson’s disease

Scientists from Scripps Research and Cardiff University made key discoveries in support of a new stem cell-based therapy for Parkinson’s disease. The approach, called an autologous therapy, uses induced pluripotent stem cells (iPSCs)—made from a patient’s own skin or blood cells—to replace the neurons in the brain that are lost in Parkinson’s. Transplants of a person’s own cells eliminates the need for immunosuppression.

In a new study, the researchers used iPSCs made from the skin cells of two people with Parkinson’s disease to make young neurons that were successfully transplanted into a rat model with the disease. They used the animal model to pinpoint exactly at what stage of development the iPSC-derived neurons should be transplanted to become mature neurons that can reverse signs of disease in the rat brain.

Study finds tracking brain waves could reduce post-op complications
Emery Brown | July 17, 2023

Distinctive EEG patterns indicate when a patient’s state of unconsciousness under general anesthesia is more profound than necessary.

When patients undergo general anesthesia, their brain activity often slows down as they sink into unconsciousness. Higher doses of anesthetic drugs can induce an even deeper state of unconsciousness known as burst suppression, which is associated with cognitive impairments after the patient wakes up.

A new study from MIT, in which the researchers analyzed the EEG patterns of patients under anesthesia, has revealed brain wave signatures that could help anesthesiologists determine when patients are transitioning into that deeper state of unconsciousness. This could enable them to prevent patients from falling into that state, reducing the risk of postoperative brain dysfunction.

Promising new approach finds cancer, delivers therapy all at once
Julie Sutcliffe | June 28, 2023

New research is offering some hope in the fight against pancreatic cancer.

The answer is nuclear medicine. And the power to find cancer and deliver therapy all at the same time. Theranostics, combining therapy and diagnostics, is a promising approach to cancer treatment.

While some people fear the idea of using radioactive isotopes as a therapy in the body, Julie Sutcliffe PhD. knows the power for good.

“You have a molecule, same molecule with a different piece of radioactivity on it, so one is for imaging for diagnostics, one is for therapy for treatment,” she said. “So theranostics combine the two words together.”

DNA test could broaden access to cervical cancer screening
Rebecca Richards-Kortum | June 21, 2023

Rice engineers show low-cost, point-of-care platform is effective for HPV testing

Rice University bioengineers have demonstrated a low-cost, point-of-care DNA test for HPV infections that could make cervical cancer screening more accessible in low- and middle-income countries where the disease kills more than 300,000 women each year.

HPV, a family of viruses, infects nearly everyone at some point in their lives, often without symptoms. But more than a dozen types of HPV can cause persistent infections that result in cervical cancer, which is preventable and curable if it is detected early and managed effectively.

Nine engineers from the laboratory of Rice Professor Rebecca Richards-Kortum spent more than two years developing a DNA testing platform that combines two technologies, isothermal DNA amplification and lateral flow detection, in a way that greatly simplifies the equipment needs and procedures for testing.

Designing Surfaces to Improve Bone Grafts
Guillermo Ameer | June 12, 2023

The field of bone implants has taken incredible strides thanks to technological innovations that allow for stronger grafts that are easier to install.

Yet even with these advances, there are still risks involved in such procedures. Implants can be loosened following operations, for example, which can lead to costly surgical revisions that lengthen the recovery process for patients.

New research from an interdisciplinary team from Northwestern Engineering’s Center for Advanced Regenerative Engineering (CARE) and Center for Physical Genomics and Engineering (CPGE) could reduce the likelihood of these painful, expensive complications.

How the combination of advanced ultrasound and AI could upgrade cancer diagnostics
Azra Alizad | June 5, 2023

Researchers have shown that an automated cancer diagnostic method, which pairs cutting-edge ultrasound techniques with artificial intelligence, can accurately diagnose thyroid cancer, of which there are more than 40,000 new cases every year.

The method—deemed high-definition microvasculature imaging, or HDMI—noninvasively captures images of the tiny vessels within tumors and, based on the vessel features, automatically classifies the masses. Researchers at the Mayo Clinic College of Medicine and Science, who developed the technique, tested it on 92 patients with thyroid tumors, finding that the method could distinguish if the growths were cancerous with 89% accuracy. In a study published in the journal Cancers, the authors suggest that HDMI could potentially resolve a long-standing diagnostic challenge of assessing thyroid tumors in the clinic.

Healing Big Broken Bones With a Small Molecule
Cato Laurencin | May 24, 2023

Repairing severely damaged bones is a challenge—especially the long bones of the arms and legs. Now, UConn Health scientists describe a new method in the 22 May issue of PNAS that can promote regrowth of long bones more affordably and with fewer side effects than other techniques.

Cleanly broken bones often heal without problems. But bones with smashed or missing sections are much more difficult to regenerate. Grafting across the gaps using bone from elsewhere is one way to fix them, and about 500,000 bone grafts are done in the US every year. But bone grafts alone don’t always work, and they’re quite costly. Recently, orthopedic surgeons have begun treating difficult breaks with specific human proteins that encourage bone growth, both alone and paired with grafts or scaffolds. They are used to encourage bone regrowth in spinal fusion surgeries, for example.

Johns Hopkins Machine Learning Tool Can Identify Tumor Cell Interactions
Elana Fertig | May 12, 2023

Researchers at the Johns Hopkins Convergence Institute and the Johns Hopkins Kimmel Cancer Center have developed a machine learning (ML) model capable of identifying molecular interactions among the cells in and around tumors.

The tool, known as SpaceMarkers, leverages spatial transcriptomics, a type of technology that helps measure gene expression within a tissue sample using the genes’ locations in cells.

The press release indicates that by understanding both these intercellular interactions in the tumor microenvironment and the molecular profiles of individual cells, researchers can gain insights into tumor progression..

Jennifer Elisseeff elected to National Academy of Sciences
Jennifer Elisseeff | May 5, 2023

Three Johns Hopkins researchers elected to National Academy of Sciences

Neuroscientist Amy Bastian, biomedical engineer Jennifer Elisseeff, astrophysicist Alex Szalay among 120 new members

Three Johns Hopkins University researchers—neuroscientist Amy Bastian, biomedical engineer Jennifer Elisseeff, and astrophysicist and computer scientist Alex Szalay—have been elected to the National Academy of Sciences in recognition of their distinguished and continuing achievements in original research.

Teri Odom Elected to National Academy of Sciences
Teri Odom | May 4, 2023

Joining the company of some of history’s most distinguished scientists, Northwestern Engineering’s Teri W. Odom has been elected to the National Academy of Sciences (NAS).

Along with fellow Northwestern faculty members Timothy K. Earle and Richard B. Silverman, Odom was recognized for her excellence and notable contributions to their field of science. They are among the 120 new members and 23 new international members selected this year.

Pharmacy Researchers License New NSAIDS-Administering Technology
Diane Burgess | May 4, 2023

Slow-releasing implants are designed to reduce side effects associated with medications for pain relief of rheumatoid arthritis and osteoarthritis

For rheumatologic conditions like rheumatoid arthritis and osteoarthritis, NSAIDS are often the first line of medications used for pain relief. UConn Pharmacy researchers have discovered a way to minimize the side effects associated with the treatment and bring it to market.

Nonsteroidal anti-inflammatory drugs (NSAIDS) are widely used to relieve pain, reduce fever, and bring down inflammation. More than 30 billion doses are taken each year — making them among the most popular medications worldwide for general pain relief.