Engineering Diversity

Author Archive

Transforming flies into degradable plastics
Karen Wooley | August 14, 2023

Imagine using insects as a source of chemicals to make plastics that can biodegrade later — with the help of that very same type of bug. That concept is closer to reality than you might expect. Today, researchers will describe their progress to date, including isolation and purification of insect-derived chemicals and their conversion into functional bioplastics.

The researchers will present their results at the fall meeting of the American Chemical Society (ACS). ACS Fall 2023 is a hybrid meeting being held virtually and in-person Aug. 13–17, and features about 12,000 presentations on a wide range of science topics.

“For 20 years, my group has been developing methods to transform natural products — such as glucose obtained from sugar cane or trees — into degradable, digestible polymers that don’t persist in the environment,” said Karen Wooley, PhD, the project’s principal investigator.

Deep learning unlocks personalised cancer therapy
Rachel Karchin | August 14, 2023

Engineers and cancer researchers have harnessed the power of machine learning technology to predict immune-boosting proteins.

Machine learning technology developed by a team of Johns Hopkins engineers and cancer researchers can accurately predict cancer-related protein fragments that may trigger an immune system response.

If validated in clinical trials, the technology could help scientists overcome a major hurdle to developing personalised immunotherapies and vaccines.

In a new study, investigators from Johns Hopkins Biomedical Engineering, the Johns Hopkins Institute for Computational Medicine, the Johns Hopkins Kimmel Cancer Center and the Bloomberg~Kimmel Institute for Cancer Immunotherapy show that their deep learning method, called BigMHC, can identify protein fragments on cancer cells that elicit a tumour cell-killing immune response, an essential step in understanding response to immunotherapy and in developing personalised cancer therapies.

New DNA Identification Approach Could Improve Monitoring for Chronic Diseases
Shana Kelley | July 26, 2023

Investigators led by Shana Kelley, PhD, the Neena B. Schwartz Professor of Chemistry, Biomedical Engineering, and of Biochemistry and Molecular Genetics, have developed a novel approach for identifying sequences of artificial DNA with differing levels of binding to other small molecules.

The approach, detailed in a study published in Nature Chemistry, could help improve the efficiency of diagnostic monitoring for patients with chronic diseases.

Aptamers are sequences of artificial DNA that selectively bind to other small molecules such as peptides, carbohydrates and foreign pathogens. Aptamers can be used for therapeutic purposes in the same way as monoclonal antibodies, and have been used for pathogen and cancer recognition as well as stem cell markers.

Study optimizes patient-specific stem cell-based therapy for Parkinson’s disease
Jeanne Loring | July 19, 2023

The discovery by scientists from Scripps Research and Cardiff University paves the way for clinical trials that use patients’ own cells to treat Parkinson’s disease

Scientists from Scripps Research and Cardiff University made key discoveries in support of a new stem cell-based therapy for Parkinson’s disease. The approach, called an autologous therapy, uses induced pluripotent stem cells (iPSCs)—made from a patient’s own skin or blood cells—to replace the neurons in the brain that are lost in Parkinson’s. Transplants of a person’s own cells eliminates the need for immunosuppression.

In a new study, the researchers used iPSCs made from the skin cells of two people with Parkinson’s disease to make young neurons that were successfully transplanted into a rat model with the disease. They used the animal model to pinpoint exactly at what stage of development the iPSC-derived neurons should be transplanted to become mature neurons that can reverse signs of disease in the rat brain.

Study finds tracking brain waves could reduce post-op complications
Emery Brown | July 17, 2023

Distinctive EEG patterns indicate when a patient’s state of unconsciousness under general anesthesia is more profound than necessary.

When patients undergo general anesthesia, their brain activity often slows down as they sink into unconsciousness. Higher doses of anesthetic drugs can induce an even deeper state of unconsciousness known as burst suppression, which is associated with cognitive impairments after the patient wakes up.

A new study from MIT, in which the researchers analyzed the EEG patterns of patients under anesthesia, has revealed brain wave signatures that could help anesthesiologists determine when patients are transitioning into that deeper state of unconsciousness. This could enable them to prevent patients from falling into that state, reducing the risk of postoperative brain dysfunction.

Promising new approach finds cancer, delivers therapy all at once
Julie Sutcliffe | June 28, 2023

New research is offering some hope in the fight against pancreatic cancer.

The answer is nuclear medicine. And the power to find cancer and deliver therapy all at the same time. Theranostics, combining therapy and diagnostics, is a promising approach to cancer treatment.

While some people fear the idea of using radioactive isotopes as a therapy in the body, Julie Sutcliffe PhD. knows the power for good.

“You have a molecule, same molecule with a different piece of radioactivity on it, so one is for imaging for diagnostics, one is for therapy for treatment,” she said. “So theranostics combine the two words together.”

DNA test could broaden access to cervical cancer screening
Rebecca Richards-Kortum | June 21, 2023

Rice engineers show low-cost, point-of-care platform is effective for HPV testing

Rice University bioengineers have demonstrated a low-cost, point-of-care DNA test for HPV infections that could make cervical cancer screening more accessible in low- and middle-income countries where the disease kills more than 300,000 women each year.

HPV, a family of viruses, infects nearly everyone at some point in their lives, often without symptoms. But more than a dozen types of HPV can cause persistent infections that result in cervical cancer, which is preventable and curable if it is detected early and managed effectively.

Nine engineers from the laboratory of Rice Professor Rebecca Richards-Kortum spent more than two years developing a DNA testing platform that combines two technologies, isothermal DNA amplification and lateral flow detection, in a way that greatly simplifies the equipment needs and procedures for testing.

Designing Surfaces to Improve Bone Grafts
Guillermo Ameer | June 12, 2023

The field of bone implants has taken incredible strides thanks to technological innovations that allow for stronger grafts that are easier to install.

Yet even with these advances, there are still risks involved in such procedures. Implants can be loosened following operations, for example, which can lead to costly surgical revisions that lengthen the recovery process for patients.

New research from an interdisciplinary team from Northwestern Engineering’s Center for Advanced Regenerative Engineering (CARE) and Center for Physical Genomics and Engineering (CPGE) could reduce the likelihood of these painful, expensive complications.

How the combination of advanced ultrasound and AI could upgrade cancer diagnostics
Azra Alizad | June 5, 2023

Researchers have shown that an automated cancer diagnostic method, which pairs cutting-edge ultrasound techniques with artificial intelligence, can accurately diagnose thyroid cancer, of which there are more than 40,000 new cases every year.

The method—deemed high-definition microvasculature imaging, or HDMI—noninvasively captures images of the tiny vessels within tumors and, based on the vessel features, automatically classifies the masses. Researchers at the Mayo Clinic College of Medicine and Science, who developed the technique, tested it on 92 patients with thyroid tumors, finding that the method could distinguish if the growths were cancerous with 89% accuracy. In a study published in the journal Cancers, the authors suggest that HDMI could potentially resolve a long-standing diagnostic challenge of assessing thyroid tumors in the clinic.

Healing Big Broken Bones With a Small Molecule
Cato Laurencin | May 24, 2023

Repairing severely damaged bones is a challenge—especially the long bones of the arms and legs. Now, UConn Health scientists describe a new method in the 22 May issue of PNAS that can promote regrowth of long bones more affordably and with fewer side effects than other techniques.

Cleanly broken bones often heal without problems. But bones with smashed or missing sections are much more difficult to regenerate. Grafting across the gaps using bone from elsewhere is one way to fix them, and about 500,000 bone grafts are done in the US every year. But bone grafts alone don’t always work, and they’re quite costly. Recently, orthopedic surgeons have begun treating difficult breaks with specific human proteins that encourage bone growth, both alone and paired with grafts or scaffolds. They are used to encourage bone regrowth in spinal fusion surgeries, for example.

Johns Hopkins Machine Learning Tool Can Identify Tumor Cell Interactions
Elana Fertig | May 12, 2023

Researchers at the Johns Hopkins Convergence Institute and the Johns Hopkins Kimmel Cancer Center have developed a machine learning (ML) model capable of identifying molecular interactions among the cells in and around tumors.

The tool, known as SpaceMarkers, leverages spatial transcriptomics, a type of technology that helps measure gene expression within a tissue sample using the genes’ locations in cells.

The press release indicates that by understanding both these intercellular interactions in the tumor microenvironment and the molecular profiles of individual cells, researchers can gain insights into tumor progression..

Jennifer Elisseeff elected to National Academy of Sciences
Jennifer Elisseeff | May 5, 2023

Three Johns Hopkins researchers elected to National Academy of Sciences

Neuroscientist Amy Bastian, biomedical engineer Jennifer Elisseeff, astrophysicist Alex Szalay among 120 new members

Three Johns Hopkins University researchers—neuroscientist Amy Bastian, biomedical engineer Jennifer Elisseeff, and astrophysicist and computer scientist Alex Szalay—have been elected to the National Academy of Sciences in recognition of their distinguished and continuing achievements in original research.

Teri Odom Elected to National Academy of Sciences
Teri Odom | May 4, 2023

Joining the company of some of history’s most distinguished scientists, Northwestern Engineering’s Teri W. Odom has been elected to the National Academy of Sciences (NAS).

Along with fellow Northwestern faculty members Timothy K. Earle and Richard B. Silverman, Odom was recognized for her excellence and notable contributions to their field of science. They are among the 120 new members and 23 new international members selected this year.

Pharmacy Researchers License New NSAIDS-Administering Technology
Diane Burgess | May 4, 2023

Slow-releasing implants are designed to reduce side effects associated with medications for pain relief of rheumatoid arthritis and osteoarthritis

For rheumatologic conditions like rheumatoid arthritis and osteoarthritis, NSAIDS are often the first line of medications used for pain relief. UConn Pharmacy researchers have discovered a way to minimize the side effects associated with the treatment and bring it to market.

Nonsteroidal anti-inflammatory drugs (NSAIDS) are widely used to relieve pain, reduce fever, and bring down inflammation. More than 30 billion doses are taken each year — making them among the most popular medications worldwide for general pain relief.

Microneedle Patch Printer Enables On-Demand Vaccine Manufacturing
Ana Jaklenec | April 24, 2023

The portable instrument could increase global access to vaccines by simplifying their storage, distribution, and administration.

Researchers from the lab of Robert Langer, ScD, at the Koch Institute for Integrative Cancer Research at the Massachusetts Institute of Technology (MIT), say they have developed a printer for microneedle patches smaller than postage stamps that penetrate the skin to deliver vaccines, including the COVID-19 mRNA vaccine.

The research article, “A microneedle vaccine printer for thermostable COVID-19 mRNA vaccines,” was published in Nature Biotechnology.

CRISPR-Cas-amplified urinary biomarkers for multiplexed and portable cancer diagnostics
Sangeeta Bhatia | April 24, 2023

Synthetic biomarkers, bioengineered sensors that generate molecular reporters in diseased microenvironments, represent an emerging paradigm in precision diagnostics. Despite the utility of DNA barcodes as a multiplexing tool, their susceptibility to nucleases in vivo has limited their utility. Here we exploit chemically stabilized nucleic acids to multiplex synthetic biomarkers and produce diagnostic signals in biofluids that can be ‘read out’ via CRISPR nucleases. The strategy relies on microenvironmental endopeptidase to trigger the release of nucleic acid barcodes and polymerase-amplification-free, CRISPR-Cas-mediated barcode detection in unprocessed urine. Our data suggest that DNA-encoded nanosensors can non-invasively detect and differentiate disease states in transplanted and autochthonous murine cancer models. We also demonstrate that CRISPR-Cas amplification can be harnessed to convert the readout to a point-of-care paper diagnostic tool. Finally, we employ a microfluidic platform for densely multiplexed, CRISPR-mediated DNA barcode readout that can potentially evaluate complex human diseases rapidly and guide therapeutic decisions.

Python-based compiler achieves orders-of-magnitude speedups
Bonnie Berger | March 14, 2023

Codon compiles Python code to run more efficiently and effectively while allowing for customization and adaptation to various domains.

In 2018, the Economist published an in-depth piece on the programming language Python. “In the past 12 months,” the article said, “Google users in America have searched for Python more often than for Kim Kardashian.” Reality TV stars, be wary.

The high-level language has earned its popularity, too, with legions of users flocking daily to the language for its ease of use due in part to its simple and easy-to-learn syntax. This led researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and elsewhere to make a tool to help run Python code more efficiently and effectively while allowing for customization and adaptation to different needs and contexts. The compiler, which is a software tool that translates source code into machine code that can be executed by a computer’s processor, lets developers create new domain-specific languages (DSLs) within Python — which is typically orders of magnitude slower than languages like C or C++ — while still getting the performance benefits of those other languages.

‘Groundbreaking’ Soil Sensors From UT Dallas Bioengineers Could Help Combat Climate Change, Food Insecurity
Shalini Prasad | March 9, 2023

“This is the equivalent of having a wearable health sensor on your body that tells you in real time what’s happening. Think of it as a wearable for the soil,” Dr. Shalini Prasad said.

Soil quality isn’t just a concern for farmers and policymakers—it also matters on a personal level. The health of our soil affects everything from the food we eat to the air we breathe. But thanks to bioengineers at UT Dallas, new soil sensors could help improve soil productivity on a global scale.

Bioengineers at the University of Texas at Dallas have developed sensors that monitor multiple soil parameters, including total soil carbon, to provide farmers with accurate, real-time, continuous data to improve soil health and productivity.

AI Model Provides Insights into Long-Term Traumatic Brain Injury Risk
Ellen Kuhl | March 7, 2023

A new AI model may signal a ‘paradigm shift’ in traumatic brain injury research by more accurately modeling the tissue deformations that lead to brain damage.

Stanford University researchers are leveraging artificial intelligence (AI) to help identify which computational models perform best at modeling mechanical stress on the brain, which may help drive insights into why some traumatic brain injuries (TBIs) lead to long-term brain damage while others do not.

The press release states that the ability to model the mechanical forces causing the compression, stretching, twisting, and other deformations of brain tissue that lead to brain damage is critical to understanding TBI. This modeling could help researchers understand why some TBIs lead to lasting brain damage and some don’t.

First Transient Electronic Bandage Speeds Healing by 30 Percent
Guillermo Ameer | February 22, 2023

Northwestern Engineering researchers have developed a first-of-its-kind small, flexible, stretchable bandage that accelerates healing by delivering electrotherapy directly to the wound site. 

In an animal study, the new bandage healed diabetic ulcers 30 percent faster than in mice without the bandage. 

The bandage also actively monitors the healing process and then harmlessly dissolves — electrodes and all — into the body after it is no longer needed. The new device could provide a powerful tool for patients with diabetes, whose ulcers can lead to various complications, including amputated limbs or even death.

Advancing Antiracism, Diversity, Equity, and Inclusion in STEMM Organizations
National Academies

People from minoritized racial and ethnic groups continue to face numerous systemic barriers that impede their ability to access, persist, and thrive in STEMM higher education and the workforce.

To promote a culture of antiracism, diversity, equity, and inclusion (ADEI) in STEMM, organizations must actively work to dismantle policies and practices that disadvantage people from minoritized groups.

Disrupted flow of brain fluid may underlie neurodevelopmental disorders
Samuel Achilefu | February 9, 2023

The brain floats in a sea of fluid that cushions it against injury, supplies it with nutrients and carries away waste. Disruptions to the normal ebb and flow of the fluid have been linked to neurological conditions including Alzheimer’s disease and hydrocephalus, a disorder involving excess fluid around the brain.

Researchers at Washington University School of Medicine in St. Louis created a new technique for tracking circulation patterns of fluid through the brain and discovered, in rodents, that it flows to areas critical for normal brain development and function. Further, the scientists found that circulation appears abnormal in young rats with hydrocephalus, a condition associated with cognitive deficits in children.

National Academy of Engineering adds 3 Buckeyes
Judit E. Puskas | February 9, 2023

Election recognizes outstanding contributions to engineering research, practice or education

Two Ohio State University professors and a recently retired faculty member have been elected to the National Academy of Engineering (NAE) Class of 2023 in recognition of sustained excellence in innovation and education.

Alan Luo, Judit E. Puskas and Longya Xu are among 124 new NAE members, bringing the total U.S. membership to 2,420 and the number of international members to 319.

Melody Swartz Elected to National Academy of Engineering
Melody Swartz | February 9, 2023

Melody Swartz, William B. Ogden Professor at the University of Chicago’s Pritzker School of Molecular Engineering (PME), has been elected to the National Academy of Engineering (NAE) for her research into lymphatic transport and immunobiology, informing novel approaches for cancer immunotherapy and vaccination.

Election to the National Academy of Engineering is among the highest professional distinctions for engineers. Academy membership honors those who have made outstanding contributions to engineering research, practice, or education, particularly as it relates to developing fields of technology or advancements in traditional fields of engineering.

NIST Director Laurie Locascio Elected to National Academy of Engineering
Laurie Locascio | February 8, 2023

Laurie E. Locascio, under secretary of commerce for standards and technology and director of the National Institute of Standards and Technology (NIST), has been elected to the National Academy of Engineering — one of the highest professional distinctions accorded to an engineer. 

Locascio leads NIST’s collaborative efforts with industry, academia and government to unleash U.S. innovation by advancing technology, measurements and standards. A key priority for her is the successful implementation of the CHIPS for America initiative, a $50 billion suite of programs to strengthen and revitalize U.S. leadership in semiconductor research, development and manufacturing. 

Barzilay elected to National Academy of Engineering
Regina Barzilay | February 7, 2023

On February 7th, the National Academy of Engineering (NAE) elected Delta Electronics Professor of Electrical Engineering and Computer Science at MIT and CSAIL member Regina Barzilay as a new member. The NAE recognized Barzilay for her work on machine learning models that understand structures in text, molecules, and medical images, choosing members who are “pioneering new and developing fields of technology, making major advancements in traditional fields of engineering, or developing/implementing innovative approaches to engineering education.”

Her election caps off a remarkable decade of work. After being diagnosed with breast cancer in 2014, Barzilay shifted much of her efforts toward cancer research. Three years later, she developed a machine learning model that could have diagnosed her cancer earlier. In 2018, she helped launch the Jameel Clinic, which has since initiated machine learning efforts on COVID-19, different forms of cancer, Parkinson’s, and other diseases.

Michael J. Barber elected to National Academy of Engineering
Michael J. Barber | February 7, 2023

The National Academy of Engineering (NAE) has elected 106 new members and 18 international members, announced NAE President John L. Anderson today. This brings the total U.S. membership to 2,420 and the number of international members to 319.

Election to the National Academy of Engineering is among the highest professional distinctions accorded to an engineer. Academy membership honors those who have made outstanding contributions to “engineering research, practice, or education, including, where appropriate, significant contributions to the engineering literature” and to “the pioneering of new and developing fields of technology, making major advancements in traditional fields of engineering, or developing/implementing innovative approaches to engineering education.

How sound waves trigger immune responses to cancer in mice
Zhen Xu | January 31, 2023

When noninvasive sound waves break apart tumors, they trigger an immune response in mice. By breaking down the cell wall “cloak,” the treatment exposes cancer cell markers that had previously been hidden from the body’s defenses, researchers at the University of Michigan have shown.

The technique developed at Michigan, known as histotripsy, offers a two-prong approach to attacking cancers: the physical destruction of tumors via sound waves and the kickstarting of the body’s immune response. It could potentially offer medical professionals a treatment option for patients without the harmful side effects of radiation and chemotherapy.

How to make hydrogels more injectable
Jennifer Lewis | January 31, 2023

Gel-like materials that can be injected into the body hold great potential to heal injured tissues or manufacture entirely new tissues. Many researchers are working to develop these hydrogels for biomedical uses, but so far very few have made it into the clinic.

To help guide in the development of such materials, which are made from microscale building blocks akin to squishy LEGOs, MIT and Harvard University researchers have created a set of computational models to predict the material’s structure, mechanical properties, and functional performance outcomes. The researchers hope that their new framework could make it easier to design materials that can be injected for different types of applications, which until now has been mainly a trial-and-error process.

Accurate integrated imaging and projection system for oral cancer diagnosis
Rebecca Richards-Kortum | January 19, 2023

Oral cancer is a globally prevalent disease with an astonishingly low five-year survival rate of less than 50%. A key factor for its poor prognosis is delayed diagnosis resulting in more late-stage oral cancers. At these later stages, treatment becomes less effective and harsher on the body. Hence, many scientists aim to develop and improve diagnostic techniques for the early detection of oral cancer. At present, the gold standard for the diagnosis of most oral cancers is biopsy of suspicious oral lesions and pathologic analysis of the extracted small amounts of tissue. However, it is extremely important that clinicians biopsy the areas within the abnormal lesion with the worst disease. Currently, the decision whether or not to perform a biopsy, and the optimal biopsy site, are based on clinical examination, which greatly depends upon the experience of the examining clinician. To help identify high-risk regions, clinicians can also use commercially available imaging techniques based on autofluorescence to detect abnormal tissue at the macroscopic level, although current autofluorescence technologies suffer from low specificity for neoplastic disease.

University of Toronto scientists use machine learning to fast-track drug formulation development
Christine Allen | January 10, 2023

Scientists at the University of Toronto have successfully tested the use of machine learning models to guide the design of long-acting injectable drug formulations. The potential for machine learning algorithms to accelerate drug formulation could reduce the time and cost associated with drug development, making promising new medicines available faster.

The study was published today in Nature Communications and is one of the first to apply machine learning techniques to the design of polymeric long-acting injectable drug formulations.

Mechanism Behind Osteoarthritis Could Lead to New Treatments
Fabrisia Ambrosio | January 10, 2023

Researchers in the United States and Japan have discovered a new mechanism that links age-related cartilage tissue stiffening with the repression of a key protein associated with longevity. These findings enhance the understanding of mechanisms that lead to the deterioration of joints that causes osteoarthritis, according to the authors of a new study, published January 10th in Nature Communications.

In the study, researchers showed that increased stiffening of the extracellular matrix – a network of proteins and other molecules that surround and support tissues in the body – led to a decrease in a so-called “longevity protein” called Klotho (α-Klotho) in knee cartilage brought about by epigenetic changes. This Klotho decrease then damaged the cells in healthy cartilage called chondrocytes. Conversely, exposing aged chondrocytes to a softer extracellular matrix restored the knee cartilage to a more youthful state.

Harriet Nembhard named president of Harvey Mudd College
Harriet Nembhard | December 6, 2022

Harriet Nembhard, dean of the University of Iowa’s College of Engineering, has been named president of Harvey Mudd College, a liberal arts college specializing in science, engineering, and mathematics located in Claremont, California.

Nembhard, who joined Iowa in June 2020, will begin her new position July 1. The UI will conduct a national search for Nembhard’s replacement.

“I congratulate Dean Nembhard and wish her the best of luck in her new role,” says Executive Vice President and Provost Kevin Kregel. “Under her leadership, the College of Engineering has continued to build upon its exceptional research reputation while advancing equity and inclusion in STEM education. She leaves the college in a strong position moving forward.

LaShanda Korley Appointed U.S. Science Envoy
LaShanda Korley | December 6, 2022

Esteemed engineer to travel the world to advance science and technology cooperation with U.S.

LaShanda Korley, Distinguished Professor of Materials Science and Engineering and Chemical and Biomolecular Engineering at the University of Delaware, has been appointed a U.S. Science Envoy for 2023. The announcement was made by the U.S. Department of State on Tuesday, Dec. 6.

Through the Science Envoy Program, eminent U.S. scientists and engineers leverage their expertise and networks to forge connections and identify opportunities for sustained international cooperation, championing innovation and demonstrating America’s scientific leadership and technical ingenuity.

Finding the “Sweet Spot” for Indoor Humidity May Help to Reduce COVID-19 Transmission
Lydia Bourouiba | November 18, 2022

As friends and families are beginning to plan holiday gatherings, a new study found that raising the humidity level could be another mitigation method to reduce COVID-19. That sweet spot looks to be between 40% and 60% humidity.

Researchers from Massachusetts Institute of Technology (MIT) combined population-based COVID-19 data with meteorologic measurements from 121 countries collected between January and August 2020 (J R Soc Interface 2022;19[196]:20210865). Countries included had reported at least 50 COVID-19–related deaths, indicating at least one outbreak had occurred. The researchers processed the epidemiological data while accounting for bias, and developed a computational workflow to estimate indoor conditions based on outdoor weather data and standard indoor comfort conditions.

Vanderbilt study finds that diabetes may hasten breast cancer tumor growth and stiffness
Cynthia Reinhart-King | November 18, 2022

While diabetes is already associated with an increased risk of developing breast cancer, a new Vanderbilt study published in Science Advances on November 18 indicates that presence of the disease may increase tumor growth and stiffness.

Researchers also found that diabetes treatments could reduce the tumor growth and stiffness to levels comparable with non-diabetic ones. The research was led by Cynthia Reinhart-King, Cornelius Vanderbilt Professor of Engineering and University Distinguished Professor. Vanderbilt Ph.D. student Wenjun Wang, a current member of Reinhart-King’s cellular mechanics lab, and Lauren Hapach, PhD’21, a former lab member, were co-authors.

Are Covid-19 “comas” signs of a protective hibernation state?
Emery Brown | November 18, 2022

Scientists hypothesize that, as in a hibernating turtle, the brain under sedation and deprived of oxygen may assume a protective state.

Many Covid-19 patients who have been treated for weeks or months with mechanical ventilation have been slow to regain consciousness even after being taken off sedation. A new article in the Proceedings of the National Academy of Sciences offers the hypothesis that this peculiar response could be the effect of a hibernation-like state invoked by the brain to protect cells from injury when oxygen is scarce.

A very similar kind of state, characterized by the same signature change of brain rhythms, is not only observed in cardiac arrest patients treated by chilling their body temperature, a method called “hypothermia,” but also by the painted turtle, which has evolved a form of self-sedation to contend with long periods of oxygen deprivation, or “anoxia,” when it overwinters underwater.

Old mice regain leg strength after antibody treatment, Stanford Medicine researchers find
Helen Blau | November 15, 2022

Muscle stem cells, the cells in muscle fibers that generate new muscle cells after injury or exercise, lose their potency with age. But a study by researchers at Stanford Medicine shows that old mice regain the leg muscle strength of younger animals after receiving an antibody treatment that targets a pathway mediated by a molecule called CD47.

The findings are surprising because CD47, billed as the “don’t eat me” molecule, is better known as a target for cancer immunotherapy than for muscle regeneration. It peppers the surface of many cancer cells, protecting them from immune cells that patrol the body to root out and engulf dysfunctional or abnormal cells. Now it seems old muscle stem cells may use a similar approach to avoid being culled by the immune system.

Dimension Inx and Lurie Children’s Hospital of Chicago awarded joint NIH grant to expand fertility restoration options
Ramille Shah | November 10, 2022

Exploratory collaboration will focus on developing strategies using 3-D printed bioscaffolds to support the growth and maturation of ovarian follicles to produce fertilizable eggs

Newswise — Dimension Inx, a regenerative biomaterials company, and Ann & Robert H. Lurie Children’s Hospital of Chicago have been jointly awarded an NIH Exploratory/Developmental Research Grant. The grant focuses on uncovering a novel approach to in vitro growth and maturation (IVGM) of ovarian follicles. Together, Dimension Inx and Lurie Children’s will use the funding to further explore the development of a more accessible and affordable infertility preservation intervention, one particularly useful in the emerging field of oncofertility.

Infertility is a significant and growing global health problem, with estimates suggesting more than 186 million individuals live with infertility worldwide. While assistive reproductive technologies (ART) methods like IVF have been available for over four decades, these technologies remain largely inaccessible and unaffordable.

Popular Pharmaceutical Target in Cells May Prove Even More Useful
Jin Zhang | October 26, 2022

Researchers at University of California San Diego have identified a new signaling process involving G protein-coupled receptors (GPCRs), a cellular target already exploited by hundreds of diverse drugs. The discovery, published in the October 26, 2022 issue of Nature, opens the possibility of new therapies, including for multiple forms of cancer.

GPCRs are the largest and most diverse group of membrane receptors in eukaryotes — cells containing a nucleus and other organelles. Residing on the cell’s surface, they act as an inbox for messages arriving in the form of sugars, proteins, lipids and peptides, and play myriad roles in body functions, including fundamentally in regulating communications between cells.

What causes severe COVID symptoms? Research examines role of immune systems
Melody Swartz | October 20, 2022

UChicago study examines how autoantibodies could cause complications in some patients

Since the earliest months of the COVID-19 pandemic, physicians and scientists worldwide have been working to understand how exactly the virus makes us sick. That task, already complicated by COVID’s rapid spread, is made more challenging by some of its unusual, seemingly inexplicable symptoms, such as blood pressure dysregulation and blood clots.

Now, research from the University of Chicago’s Pritzker School of Molecular Engineering (PME) shows that the immune system may unintentionally contribute to the disease’s strangest symptoms.

Katherine Pollard Elected to the National Academy of Medicine
Katherine Pollard | October 17, 2022

Gladstone Data Scientist Elected to the National Academy of Medicine

Data scientist and statistician Katie Pollard, PhD, director of the Gladstone Institute of Data Science and Biotechnology, has been elected to the National Academy of Medicine (NAM), one of the highest honors in health and medicine. Through its election process, the Academy recognizes individuals who have demonstrated outstanding professional achievement and commitment to service.

Pollard is perhaps best known for developing a novel statistical approach to identify human accelerated regions (HARs), which are stretches of DNA that rapidly changed when humans evolved from primate ancestors. Many of these regions of the human genome help determine when and where important genes—including those associated with diseases—are turned on or off.

Audrey Bowden receives NIH funding to develop point-of-care detection of jaundice in newborns
Audrey Bowden | October 13, 2022

Audrey Bowden, Dorothy J. Wingfield Phillips Chancellor’s Faculty Fellow and associate professor of biomedical and electrical engineering, has won a grant from the National Institute of Biomedical Imaging and Bioengineering to develop a novel noninvasive smartphone-integrated device to provide accurate, point-of-care detection of jaundice in newborns of all skin tones.

Newborns have immature liver function that is inefficient at metabolizing bilirubin, a yellowish pigment that is made during the normal breakdown of red blood cells. Consequently, nearly 80 percent of preterm and 60 percent of term babies develop hyperbilirubinemia, a potentially fatal form of neonatal jaundice, within a week of their birth. The gold standard for detecting hyperbilirubinemia is the use of frequent blood tests to measure bilirubin levels, but this approach is expensive and painful and increases likelihood of infection.

Tissue chip developments: what’s the 411?
Gordana Vunjak-Novakovic | October 4, 2022

Tissue chips—tiny mimics of human organs, just millimeters in size—represent an alternative to animal models as a way to study disease or evaluate drugs. However, a major limitation of tissue chips is that they do not faithfully imitate tissue interactions, so it’s impossible to know how a treatment for liver disease, for example, might affect another organ, like the heart.

To improve this technology, NIBIB-funded researchers have developed an interlinked tissue chip system that can model four mature organs in their perspective environments simultaneously. These multi-organ tissue chips, which could be personalized to model individual patients, may represent a new way to evaluate the systemic effects of novel drugs.

Gene Loss Enhances Metastasis and Cancer Progression
Shana Kelley | September 29, 2022

Investigators have discovered that the loss of the gene SLIT2 in circulating tumor cells regulates metastasis of prostate cancer tumors, according to a Northwestern Medicine study published in Science Advances.

Metastasis accounts for most cancer-related deaths, yet its underlying mechanisms have remained poorly understood despite recent advances in cancer treatments and care.

Leading Tissue Regeneration Expert to Chair UVA’s Department of Biomedical Engineering
Shayn Peirce-Cottler | September 9, 2022

Shayn Peirce-Cottler, PhD, an international leader in biomedical engineering and a University of Virginia faculty member since 2004, has been named chair of UVA’s Department of Biomedical Engineering. She succeeds Frederick H. Epstein, PhD, who has served as chair of the Department of Biomedical Engineering – a joint program of UVA’s School of Medicine and School of Engineering and Applied Science – since 2011. Epstein was named the School of Engineering’s associate dean for research earlier this year.

“With her long tenure at UVA, Dr. Peirce-Cottler has a deep understanding and appreciation for our talented, accomplished team in the Department of Biomedical Engineering,” said Melina R. Kibbe, MD, the dean of the School of Medicine and chief health affairs officer for UVA Health. “She is a nationally recognized outstanding scientist and educator and has been a shining leader within the department. I look forward to seeing how she builds on the department’s 55 years of innovation.” 

Discovery points to new drug targets that could prevent cancer spread
Sylvia Plevritis | August 22, 2022

Any cancer cell migrating from a tumor to set up shop elsewhere in the body will face a brutal attack from an immune system programmed to seek and destroy abnormal cells. But two recent studies from Stanford Medicine show that the hearty few that manage to infiltrate nearby lymph nodes carry out a stunning biological coup — convincing the body’s defense system to accept them as part of its own tissues. This savvy rebranding gives tumor cells a free pass to easily metastasize to any site in the body and significantly worsen cancer prognoses.

The studies, conducted in laboratory mice, human cells and human tissue samples from cancer patients, upend the idea that lymph nodes — often the first site of metastasis — are simply passive downstream harbors for circulating cancer cells that have broken loose from nearby tumors.

New strategy for delivery of therapeutic proteins could help treat degenerative eye diseases
Molly Shoichet | August 18, 2022

A U of T Engineering research team has created a new platform that delivers multiple therapeutic proteins to the body, each at its own independently controlled rate. The innovation could help treat degenerative diseases such as age-related macular degeneration (AMD), the leading cause of vision loss for people over 50.

Unlike traditional drugs made of small molecules, therapeutic proteins are synthetic versions of larger biomolecules naturally present in the body. One example is the synthetic insulin used to treat diabetes. There are other proteins that can modulate the body’s own repair processes in ways that small-molecule drugs cannot.

Professor Laurencin Publishes Breakthrough Report on Rotator Cuff Regeneration Treatment
Cato Laurencin | August 12, 2022

A new way to regenerate muscle could help repair the damaged shoulders of millions of people every year. The technique uses advanced materials to encourage muscle growth in rotator cuff muscles. Dr. Cato Laurencin and his team reported the findings in the Proceedings of the National Academy of Sciences (PNAS) August 8th issue.

Tears of the major tendons in the shoulder joint, commonly called the rotator cuff, are common injuries in adults. Advances in surgery have made ever better rotator cuff repairs possible. But failure rates with surgery can be high. Now, a team of researchers from the UConn School of Medicine led by Laurencin, a surgeon, engineer and scientist, reports that a graphene/polymer matrix embedded into shoulder muscle can prevent re-tear injuries.

Scaling up cell imaging
Anne Carpenter | August 3, 2022

Scientists have learned a lot about human biology by looking at cells under a microscope, but they might not notice tiny differences between cells or even know what they’re looking for. Researchers at the Broad Institute of MIT and Harvard, in the laboratories of Anne Carpenter and Stuart Schreiber, first started developing cell painting 13 years ago to take cell imaging to the next level. The method, further advanced by Carpenter, now senior director of the Broad’s Imaging Platform and senior group leader Shantanu Singh, and colleagues, uses six colored dyes to stain eight different cell organelles. Machine learning models recognize subtle differences in the images—changes in cell morphology that might indicate disease or a drug or genetic perturbation—which allows researchers to predict the effects of a drug or mutation.

The Broad team has recently made strides in scaling up the method. They have spent the last several years building a consortium of drugmakers and academic institutions to create the world’s largest public cell painting database, which drug developers hope will help accelerate their search for promising drug candidates.