Transfusion of red blood cells (RBCs) stored anaerobically – in the absence of oxygen – is a promising technique to improve resuscitation from hemorrhagic shock, according to animal studies reported in SHOCK®: Injury, Inflammation, and Sepsis: Laboratory and Clinical Approaches, Official Journal of the Shock Society. The journal is published in the Lippincott portfolio by Wolters Kluwer.
“Resuscitation from hemorrhagic shock via transfusion of anaerobically stored RBCs recovered cardiac function, restored hemodynamic stability, and improved outcomes,” write Pedro Cabrales, PhD, of University of California, San Diego, and colleagues. But more research is needed to determine whether the improved recovery seen with anaerobically stored RBCs in rats will translate into benefits for patients in hemorrhagic shock after trauma.
As medicine becomes both bigger and more personalized, the need for massive databases of patient records, such as the 1 million person All of Us Research Program , become increasingly essential to fueling both new discoveries and translational treatments.
But the looming, lingering question is to what degree are individual patients willing to share medical records and biospecimens with researchers and institutions beyond their personal physician or health care system? And more specifically, how should patients be asked and what information are they most likely to share?
In a novel attempt to answer these questions, researchers at University of California San Diego School of Medicine, with collaborators in California, North Carolina and Texas, asked patients at two academic hospitals to respond to a variety of different approaches seeking to share their medical data with other researchers.
Brooklyn Bioscience, a startup company commercializing university research to detoxify a common and dangerous class of pesticides, recently received another round of funding – this time in the form of a $250,000 grant from the National Science Foundation.
The New York University School of Engineering team behind Brooklyn Bioscience is engineering proteins to remediate and detoxify organophosphates (OPs), which cannot easily be removed by conventional means.
The two-year grant, part of the NSF’s Partnership for Innovation program, was awarded to the startup whose principals include Jin Kim Montclare, a professor of chemical and biomolecular engineering at the NYU Tandon School of Engineering and doctoral candidate Andrew Olsen.
Researchers at the University of South Florida are harnessing the power of human physiology to transform greenhouse gases into usable chemical compounds—a method that could help lessen industrial dependence on petroleum and reduce our carbon footprint.
The new biologically-based technique, published in Nature Chemical Biology, was developed by USF Professor Ramon Gonzalez, Ph.D., and his research team. It utilizes the human enzyme, 2-hydroxyacyl-coenzyme A lyase (HACL), to convert specific one-carbon (C1) materials into more complex compounds commonly used as the building blocks for an endless number of consumer and industrial products.
“In humans, this enzyme degrades branched chain fatty acids,” Gonzalez said. “It basically breaks down long carbon chains into smaller pieces. We needed it to do the opposite. So, we engineered the process to work in reverse—taking single carbon molecules and converting them into larger compounds.
One out of eight women will be diagnosed with breast cancer at some point in her lifetime. Early detection is the best tool to increase survival rates. Now researchers are looking at a new way to confirm cancer faster during a mammogram while reducing the need for additional testing.
It’s a terrifying moment for any woman. One doctor says they have found something during her mammogram.
Gilda A. Barabino, dean of The City College of New York’s Grove School of Engineering, is the recipient of the 2019 AIChE Award for Service to Society. The award, which will be presented at the annual AIChE meeting in November, recognizes outstanding contributions by a chemical engineer to community service and to the solution of socially oriented problems.
Barabino is being acknowledged for her approach in using engineering principles to solve medical issues that include disease therapies and tackling health disparities, as well as for her public policy leadership to advance the engineering profession. She is also noted for her career-long efforts and transformative impact to broaden participation in the engineering fields and professoriate through advocacy, mentorship and professional development of underrepresented minority students and faculty.
A new drug delivery system using curcumin, the main ingredient in the spice turmeric, successfully inhibited bone cancer cells while promoting growth of healthy bone cells, according to a study by the Washington State University. The work could lead to better post-operative treatments for patients with osteosarcoma.
Nimmi Ramanujam, the Robert W. Carr, Jr., Professor of Biomedical Engineering at Duke University, has won the 2019 Social Impact Abie Award.
Given by AnitaB.org, a nonprofit organization dedicated to connecting, inspiring and guiding women in computing and organizations that view technology innovation as a strategic imperative, the award recognizes a woman whose work is making a positive impact on women, technology and society, and who has developed technology that caused social change.
From medicine to fragrances, nature provides many of the key chemical compounds needed in an endless number of pharmaceuticals and consumer products. Now, a cutting-edge technique engineered by researchers at University of South Florida is changing the way scientists isolate these precious molecules.
“Plant natural products are already widely used across so many industries,” said Ramon Gonzalez, Ph.D., professor in the USF Department of Chemical & Biomedical Engineering and a Florida 21st Century World Class Scholar. “Taxus brevifolia, for example, the Pacific yew plant, contains molecules that are used to produce a chemotherapy drug for several cancer treatments. The problem is that many of these products are expensive and difficult to extract efficiently.”
Could a small ringlike structure made of plastic and copper amplify the already powerful imaging capabilities of a magnetic resonance imaging (MRI) machine? Xin Zhang, Stephan Anderson, and their team at the Boston University Photonics Center can clearly picture such a feat. With their combined expertise in engineering, materials science, and medical imaging, Zhang and Anderson, along with Guangwu Duan and Xiaoguang Zhao, designed a new magnetic metamaterial, reported in Communications Physics, that can improve MRI quality and cut scan time in half.
Natalia Trayanova, a professor in the Department of Biomedical Engineering at Johns Hopkins University, will be inducted into the Women in Technology International Hall of Fame in a ceremony today in San Jose, California.
The WITI Hall of Fame was established in 1996 to recognize, honor, and promote the outstanding contributions women make to the scientific and technological communities that improve society. Each year, five women are selected from around the world to receive this honor, and Trayanova now joins the ranks of other scientists, engineers, and CEOs who have made an impact on society through their exceptional contributions to advancing their fields of inquiry.
ASTM International’s committee on medical and surgical materials and devices (F04) presented its top annual award – the Award of Merit – to Terry O. Woods, Ph.D., solid mechanics laboratory leader, U.S. Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, in Silver Spring, Maryland, USA. The prestigious award, which includes the accompanying title of fellow, is ASTM’s highest recognition for individual contributions to developing standards.
Lung transplantation, the only lifesaving therapy for an increasing population of patients with end-stage lung disease, is severely limited by the number of available donor organs. Currently, up to 80 percent of donor lungs are rejected for serious but potentially reversible injuries. Since the beginning of transplantation in the 1960s, clinicians and scientists have been trying to address the critical shortage of donor organs.
Three MIT professors — Edward Boyden, Paula Hammond, and Aviv Regev — are among the 100 new members and 25 foreign associates elected to the National Academy of Sciences on April 30. Forty percent of the newly elected members are women, the most ever elected in any one year to date.
Membership to the National Academy of Sciences is considered one of the highest honors that a scientist or engineer can receive. Current membership totals approximately 2,380 members and nearly 485 foreign associates.
Four Lawrence Berkeley National Laboratory (Berkeley Lab) scientists have been elected to the American Academy of Arts and Sciences, a prestigious, 239-year old honorary society that recognizes accomplished scholars, scientists and artists in academia, the humanities, arts, business, and government. A bit like Berkeley Lab itself, the Academy also serves as a nonpartisan research center focused on addressing the nation’s greatest scientific and social problems through cross-disciplinary collaboration of its expert members.
Claire Tomlin, biological faculty engineer, Biological Systems and Engineering Division, and a professor of electrical engineering and computer sciences at UC Berkeley. Her research, which is currently conducted primarily at UC Berkeley, explores hybrid systems: complex systems which have discrete event dynamics as well as continuous time dynamics. Her group studies many topics and problems that can be modeled by hybrid systems as well as more general robotics, such as air traffic control automation, algorithms for decentralized optimization, modeling and analysis of biological cell networks, and unmanned aerial vehicle design and control.
Biomedical engineer Gordana Vunjak-Novakovic, PhD, University Professor, has been elected to the American Academy of Arts & Sciences.
In her laboratory at Columbia University Irving Medical Center, Vunjak-Novakovic creates new ways to engineer human tissues that could repair damaged organs, help scientists study development and disease, and provide faster methods for testing new drugs..
The American Academy of Arts and Sciences announced today that CU Boulder Professor Kristi Anseth has been elected to its 2019 class. Anseth is among more than 200 individuals selected this year for their exceptional achievements in the arts and sciences, business, philanthropy and the public sector.
Founded in 1780, the American Academy of Arts and Sciences is an honorary society that recognizes and convenes leaders from a variety of disciplines to address critical issues facing the nation and the world. The academy’s projects and publications inform public policy for the benefit of all.
Two UConn professors, Dr. Cato Laurencin and physics professor Nora Berrah, have been elected as members to the historic and prestigious American Academy of Arts and Sciences. This year, more than 200 individuals were elected to the academy with compelling achievements in academia, business, government, and public affairs.
“One of the reasons to honor extraordinary achievement is because the pursuit of excellence is so often accompanied by disappointment and self-doubt,” said David Oxtoby, president of the academy. “We are pleased to recognize the excellence of our new members, celebrate their compelling accomplishments, and invite them to join the Academy and contribute to its work.”
Columbia engineers and neuroscientists have joined forces to create 3D videos of individual nerve cells moving, stretching and switching on inside fruit fly larvae as they move. Data gleaned from these videos reveals how nerve cells called proprioceptive neurons work together to help the body sense where it is in space. To accomplish this feat, the researchers harnessed SCAPE, a cutting-edge microscope developed at Columbia that images neurons at lightning-fast speeds.
These findings, published today in Current Biology, illustrate SCAPE’s ability to reveal the inner workings of the nervous system in unprecedented detail. By creating 3D, live action images of nerve cells in larvae as the animals crawled, SCAPE allowed the researchers to see exactly how those cells along the body wall reported movements back to the brain.
Many types of cancer could be more easily treated if they were detected at an earlier stage. MIT researchers have now developed an imaging system, named “DOLPHIN,” which could enable them to find tiny tumors, as small as a couple of hundred cells, deep within the body.
In a new study, the researchers used their imaging system, which relies on near-infrared light, to track a 0.1-millimeter fluorescent probe through the digestive tract of a living mouse. They also showed that they can detect a signal to a tissue depth of 8 centimeters, far deeper than any existing biomedical optical imaging technique.
Novel therapies based on a process known as RNA interference (RNAi) hold great promise for treating a variety of diseases by blocking specific genes in a patient’s cells. Many of the earliest RNAi treatments have focused on diseases of the liver, because RNA-carrying particles tend to accumulate in that organ.
MIT researchers have now shown that an engineered model of human liver tissue can be used to investigate the effects of RNAi, helping to speed up the development of such treatments. In a paper appearing in the journal Cell Metabolism on March 5, the researchers showed with the model that they could use RNAi to turn off a gene that causes a rare hereditary disorder. And using RNA molecules that target a different gene expressed by human liver cells, they were able to reduce malaria infections in the model’s cells.
Texas ChE Professor Jennifer Maynard and her research team have engineered “antibody-like” T cell receptors that can specifically stick to cells infected with cytomegalovirus, or CMV, a virus that causes lifelong infection in more than half of all adults by age 40. These receptors represent a new potential treatment option, could aid the development of CMV vaccines and might also be used to target brain tumors.
Some professors shine most brightly in the lab. Others are particularly excellent mentors, inspiring students and other faculty members to reach new heights in their careers. Then, there are those who excel at both.
Dawn Elliott, chair of the Department of Biomedical Engineering at the University of Delaware, is being recognized as one of those multitalented academics. Elliott, a Blue and Gold Professor of Biomedical Engineering, is the inaugural recipient of the Orthopaedic Research Society’s Adele L. Boskey, PhD Award.
Tejal Desai Named Director of UCSF Health Innovation Via Engineering Program
A new initiative at UC San Francisco will bring together engineers to tackle some of the most urgent challenges in health.
The Health Innovation Via Engineering (HIVE) program will be led by Tejal Desai, PhD, the chair of the Department of Bioengineering and Therapeutic Sciences, a joint department of the UCSF Schools of Pharmacy and Medicine.
To accelerate the development of an inclusive culture in biomedical engineering (BME), we must accept complexity, seek to understand our own privilege, speak out about diversity, learn the difference between intent and impact, accept our mistakes, and learn how to engage in difficult conversations. In turn, we will be rewarded by the ideas, designs, devices and discoveries of a new generation of problem solvers and thought leaders who bring diverse experiences and perspectives.
Dr. Cato T. Laurencin, founding director of the Institute for Regenerative Engineering and the Sackler Center for Biomedical, Biological, Physical and Engineering Sciences at the University of Connecticut, is the winner of the 2019 Philip Hauge Abelson Prize, presented by the American Association for the Advancement of Science.
An eminent biomedical engineer and orthopedic surgeon, Laurencin is being honored for his unique contributions to the advancement of science. The Abelson Prize recognizes his global leadership in biomedical technology innovation, public service in shaping United States technology policy and invaluable mentorship to a generation of minority scientists.
Carnegie Mellon University will award the Dickson Prize in Science to Dr. Emery N. Brown, an esteemed anesthesiologist, neuroscientist and statistician. He is the Edward Taplin Professor of Medical Engineering and Computational Neuroscience at Massachusetts Institute of Technology , the Warren M. Zapol Professor of Anesthesia at Harvard Medical School and a practicing anesthesiologist at Massachusetts General Hospital.
Rachel Karchin, PhD, is a professor of biomedical engineering, oncology, and computer science, with joint appointments at the Whiting School of Engineering and School of Medicine at Johns Hopkins University in Baltimore. She is a core member of the Institute for Computational Medicine.
A computational biologist, Dr. Karchin develops algorithms and software to analyze genomic data and interpret its impact on human disease. Her most recent work has focused on cancer and the effects of germline and somatic alterations and their contributions to progression models of tumor evolution. She led the computational efforts to identify driver mutations for the Johns Hopkins Sidney Kimmel Cancer Center’s pioneering cancer sequencing projects, and she co-led The Cancer Genome Atlas (TCGA) PanCancer Atlas Essential Genes and Drivers Analysis Working Group.
Flexible, wireless electronic devices are rapidly emerging and have reached the level of commercialization; nevertheless, most of battery shapes are limited to either spherical and/or rectangular structures, which results in inefficient space use. Professor Il-Doo Kim’s team from the Department of Materials Science at KAIST has successfully developed technology to significantly enhance the variability of battery design through collaboration research with Professor Jennifer A. Lewis and her team from the School of Engineering and Applied Sciences at Harvard University.
Most of the battery shapes today are optimized for coin cell and/or pouch cells. Since the battery as an energy storage device occupies most of the space in microelectronic devices with different designs, new technology to freely change the shape of the battery is required.
Ten years after Professor of Biomedical Engineering Anita Mahadevan-Jansen discovered that parathyroid tissues glow under near-infrared light, the FDA has approved a device based on the technology for surgical use.
She and her team developed the technology at the Vanderbilt Biophotonics Center. The device called “PTeye” has been tested at Vanderbilt University Medical Center and Ohio State University Medical Center in an 81-patient clinical study, leading to regulatory approval. It enables real-time identification of parathyroid tissue during thyroid and parathyroid surgeries.
The placenta offers an abundant source of placenta-derived mesenchymal stem cells (pMSCs), which a new study has shown can readily form cell sheets that could be implanted in children with congenital heart defects and offer benefits for heart repair and regeneration compared to commonly used synthetic material-based scaffolds. Congenital heart disease is the leading cause of birth-defect-related illness and death. The placenta can be readily collected at birth and the cells harvested for pediatric reparative procedures, as described in the study published in Tissue Engineering, Part A, peer-reviewed journal from Mary Ann Liebert, Inc., publishers. Click here to read the full-text article free on the Tissue Engineering website through January 7, 2019.
Sitaram Emani, MD, Breanna Piekarski, RN, and Sirisha Emani, Children’s Hospital, Boston, MA and Erin Roberts, Kevin Huang, and Joyce Wong, PhD, Boston University, MA are the coauthors of the article entitled “Evaluation of Placental Mesenchymal Stem Cell Sheets for Myocardial Repair and Regeneration .” In the study, the researchers evaluated MSCs independent of their source, demonstrated their ability to form cell sheets, and described other beneficial effects related to paracrine section and cell-cell interactions at the site of MSC implantation. The ability of MSCs to secrete factors to induce cardioprotection, stimulate angiogenesis, and promote migration, proliferation and differentiation of local cardiac stem cells can all affect tissue repair.
JenaValve Technology, Inc., a developer and manufacturer of differentiated transcatheter aortic valve replacement (TAVR) systems, today announced U.S. Food and Drug Administration (FDA) approval of expansion of its Investigational Device Exemption (IDE) feasibility studies for the JenaValve Pericardial TAVR System with the Everdur™ transcatheter heart valve (THV) and Coronatix TM Transfemoral Delivery Catheter. The approval expands eligible patient enrollment from 20 patients at extreme or high surgical risk (10 aortic stenosis [AS], 10 aortic regurgitation [AR]) to 80 patients at extreme or high surgical risk (40 AS, 40 AR) at up to 10 U.S. sites.
The prospective IDE studies are part of a larger, ongoing CE Mark clinical program investigating the JenaValve Pericardial TAVR System for the same indications at centers of excellence in Europe and New Zealand.
Pneumonia, a respiratory disease that kills about 50,000 people in the United States every year, can be caused by many different microbes, including bacteria and viruses. Rapid detection of pneumonia is critical for effective treatment, especially in hospital-acquired cases which are often more severe. However, current diagnostic approaches often take several days to return definitive results, making it harder for doctors to prescribe the right treatment.
MIT researchers have now developed a nanoparticle-based technology that could be used to improve the speed of diagnosis. This type of sensor could also be used to monitor whether antibiotic therapy has successfully treated the infection, says Sangeeta Bhatia, the John and Dorothy Wilson Professor of Health Sciences and Technology and Electrical Engineering and Computer Science and the senior author of the study.
Osteoarthritis, a disease that causes severe joint pain, affects more than 20 million people in the United States. Some drug treatments can help alleviate the pain, but there are no treatments that can reverse or slow the cartilage breakdown associated with the disease.
In an advance that could improve the treatment options available for osteoarthritis, MIT engineers have designed a new material that can administer drugs directly to the cartilage. The material can penetrate deep into the cartilage, delivering drugs that could potentially heal damaged tissue.
Dr. Anthony Guiseppi-Elie has been named associate dean of Engineering Medicine (EnMed) at Texas A&M University. He is currently a TEES Research Professor and professor in the Department of Biomedical Engineering with a courtesy appointment in the Department of Electrical and Computer Engineering.
EnMed is Texas A&M University’s innovative engineering medicine school option at Houston Methodist Hospital, developed to educate a new kind of physician to create transformational technology for health care.
Quantitative analysis improves breast cancer screening, according to four abstracts at the 104th Annual Radiological Society of North America (RSNA) meeting, November 25–30, 2018. The investigators all used Volpara Solutions’ breast imaging analysis tools, including assessment of volumetric density and compression pressure, in their research.
In the study “Using Quantitative Breast Density Analysis to Predict Interval Cancers and Node Positive Cancers in Pursuit of Improved Screening Protocols,” (SSE01-03, Monday, November 26, 3:20–3:30 PM, Room: E451B), Elizabeth Burnside, MD, and colleagues investigated whether quantitative breast density can predict interval cancers and node-positive, screen-detected cancers in order to serve as a biomarker to consider more aggressive screening to improve early detection. The study involved 599 cases of screen-detected cancers and interval cancers and 605 controls from the UK NHS Breast Screening Programme. For each case, breast density was assessed by a radiologist using a visual analog scale (VAS) and BI-RADS 5th Edition density categories and using fully automated Volpara®Density™ software to calculate fibroglandular volume (FGV) and Volpara Density Grade (VDG®).
Martine LaBerge of Clemson University is one of the newest Fellows in the Biomedical Engineering Society, an honor recognizing her for exceptional achievements and experience in biomedical engineering.
LaBerge is chair of the Department of Bioengineering at Clemson and executive director of the Clemson University Biomedical Engineering Innovation Campus, or CUBEInC, in Greenville.
Northwestern Engineering’s Guillermo Ameer, a pioneer in the field of regenerative engineering, was presented the Key to Panama City, Panama, by Vice Mayor Raisa Banfield last week. The event was covered by Telemetro, a national Spanish-language television network based in Panama City.
Ameer, the Daniel Hale Williams Professor of Biomedical Engineering with the McCormick School of Engineering, was in his hometown to attend at APANAC 2018, the XVIII Congreso Nacional de Ciencia y Tecnologia, the nation’s premier science conference. He also serves as a professor of surgery at Northwestern University’s Feinberg School of Medicine, and he is the director of the Center for Advanced Regenerative Engineering (CARE).
Cynthia A. Reinhart-King, a nationally recognized cellular bioengineer, is the inaugural recipient of the Biomedical Engineering Society’s Mid-Career Award. Reinhart-King delivered the award lecture Saturday, Oct. 20, at the BMES 2018 Annual Meeting in Atlanta.
Reinhart-King received the 2010 Rita Schaffer Young Investigator Award and she is the only person to have received two of three major awards from the BMES.
MIT researchers have developed a cryptographic system that could help neural networks identify promising drug candidates in massive pharmacological datasets, while keeping the data private. Secure computation done at such a massive scale could enable broad pooling of sensitive pharmacological data for predictive drug discovery.
Datasets of drug-target interactions (DTI), which show whether candidate compounds act on target proteins, are critical in helping researchers develop new medications. Models can be trained to crunch datasets of known DTIs and then, using that information, find novel drug candidates.
Gilda A. Barabino is Dean and Berg Professor at The Grove School of Engineering at The City College of New York (CCNY). She has appointments in Biomedical Engineering, Chemical Engineering and the Sophie Davis School of Biomedical Education / CUNY School of Medicine. Prior to joining CCNY, she served as Associate Chair for Graduate Studies and Professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory. At Georgia Tech she also served as the inaugural Vice Provost for Academic Diversity. Prior to her appointments at Georgia Tech and Emory, she rose to the rank of Full Professor of Chemical Engineering and served as Vice Provost for Undergraduate Education at Northeastern University. She is a noted investigator in the areas of sickle cell disease, cellular and tissue engineering, and race/ethnicity and gender in science and engineering. She consults nationally and internationally on STEM education and research, diversity in higher education, policy, workforce development and faculty development.
Dr. Barabino received her B.S. degree in Chemistry from Xavier University of Louisiana and her Ph.D. in Chemical Engineering from Rice University. She is a Fellow of the American Association for the Advancement of Science, the American Institute for Medical and Biological Engineering (AIMBE) and the Biomedical Engineering Society (BMES). She was the Sigma Xi Distinguished Lecturer for 2012-2014. She has an extensive record of leadership and service in the chemical and biomedical engineering communities. She is the Immediate Past-President of BMES and is the President-Elect of AIMBE. Dr. Barabino has over a decade of experience in leading NSF initiatives for women and minority faculty and is the founder and Executive Director of the National Institute for Faculty Equity.
Education
PhD in Chemical Engineering, Rice University, Houston, TX
BS in Chemistry, Xavier University, New Orleans, LA
Research Interests
Barabino Laboratory on Vascular and Orthopedic Tissue Engineering Research is primarily focused on cellular and tissue responses to fluid mechanical forces in the context of vascular disease and orthopedic tissue engineering. We concentrate on the characterization and quantification of mechanical and biochemical cues that influence tissue growth and disease progression. Our interdisciplinary work incorporates biology, materials science and engineering toward novel therapeutic strategies to improve the health of individuals suffering with sickle cell disease and those suffering with diseases associated with damaged cartilage and bone. To that end, we employ innovative engineering technologies to create models that recapitulate the environment within the body in order to better understand the pathophysiology of disease and the most appropriate strategies for treatment. We also employ complementary animal models to bridge translation of our findings to human clinical practice.
Sickle Cell Disease (SCD)
SCD is a genetic disorder affecting 70,000 Americans and millions globally that induces chronic inflammation and vascular dysfunction and causes multiple organ damage as a result. The pathophysiology of SCD is quite complex and involves altered interactions between blood cells and endothelial cells lining the vessel walls, altered mechanical properties of blood, blood cells and blood vessels and altered tissue properties in affected organs. We apply innovative engineering approaches and technologies to better understand conditions that contribute to vaso-occlusion, a hallmark of the disease, and the relationship between inflammation, vascular remodeling and vascular biomechanical abnormalities. Results from these studies will enable the development of new therapies and provide clinicians with therapeutic opportunities for improved management of individuals with SCD.
Cartilage Tissue Engineering
Articular cartilage injury is a major cause of decreased mobility and pain and can lead to osteoarthritis, a debilitating disease characterized by progressive erosion of cartilage tissues. Once injured or damaged due to disease, cartilage has limited ability for regeneration and self-repair due to its avascular nature. Tissue engineering approaches combining cells, bioactive molecules and biodegradable scaffolds in defined environments that support the regeneration of functional cartilage tissues hold promise. Bioreactors are used to provide defined environments and we have developed and employed novel bioreactor systems that impart fluid flow-induced shear forces to better understand how environmental factors regulate tissue growth toward the development of optimally designed and clinically relevant engineered tissues.
Some people may follow a football team, others may follow their favorite television streaming series. For Ellen Kuhl, PhD, a professor of mechanical engineering at Stanford, her passion lies in following proteins.
In a recent Stanford news article, Kuhl explains how her team developed a computer simulation to track the spread of defective proteins in the brain. These proteins contribute to the progression of neurodegenerative diseases such as Alzheimer’s, Parkinson’s, ALS and Lou Gehrig’s disease.
Glympse Bio has developed sensor technology that it says can give clinicians an early look at a developing disease. As Glympse prepares to test its disease detection approach in a serious liver disorder, the startup has raised $22 million in Series A financing.
LS Polaris Innovation Fund and Arch Venture Partners co-led the investment in Cambridge, MA-based Glympse.
The startup has developed bioengineered nanoparticles that circulate through the body, detect disease, and report their findings through a signal read by testing the patient’s urine. The company, which spun out from the laboratory of MIT professor Sangeeta Bhatia, says its “activity sensors” can test for multiple indicators of disease, such as cancer, fibrosis, immune disorders, and infectious disease. Glympse also says its technology can monitor how a patient’s disease is responding to a drug.
People sometimes mistakenly think of general anesthesia as just a really deep sleep, but in fact, anesthesia is really four brain states — unconsciousness, amnesia, immobility, and suppression of the body’s damage sensing response, or “nociception.” In a new paper in Anesthesia and Analgesia, MIT neuroscientist and statistician Emery N. Brown and his colleagues argue that by putting nociception at the top of the priority list and taking a principled neuroscientific approach to choosing which drugs to administer, anesthesiologists can use far less medication overall, producing substantial benefits for patients.
“We’ve come up with strategies that allow us to dose the same drugs that are generally used but in different proportions that allow us to achieve an anesthetic state that is much more desirable,” says Brown, the Edward Hood Taplin Professor of Computational Neuroscience and Health Sciences and Technology in the Picower Institute for Learning and Memory at MIT and a practicing anesthesiologist at Massachusetts General Hospital.
Two years ago on Halloween, Rebecca Richards-Kortum, Ph.D., a professor of bioengineering at Rice University, walked into her lab and stopped abruptly. Staring back at her was a crowd of familiar characters.
Her students, who wear costumes for the holiday every year, had conspired to go as different versions of their mentor. There was the mother-of-six Rebecca, the saving-dying-babies-in-Africa Rebecca, the marathon-runner Rebecca, even the Albert-Einstein Rebecca—a nod to the $625,000 fellowship Richards-Kortum received from the MacArthur Foundation. Commonly known as a “genius grant,” the stipend is paid out over five years to support visionaries in their creative pursuits for the benefit of humanity…
Dr. Guillermo Ameer, Daniel Hale Williams Professor of Biomedical Engineering and Surgery at Northwestern University, is creating a set of high-tech tools to manage diverse medical conditions. Dr. Ameer directs the Center for Advanced Regenerative Engineering (CARE) which integrates and supports research, technology development, and clinical expertise to improve the outcome of tissue and organ repair and regeneration for adult and pediatric patients. Dr. Ameer’s lab develops biomaterials and nanotechnology for regenerative engineering, tissue engineering, medical devices, drug delivery, and cell delivery applications. In the lab, projects driving the creation and engineering of novel biomaterials to target and treat vascular, endocrine, and bone pathophysiologies are on deck. Dr. Ameer has co-authored over 200 peer-reviewed journal publications and conference abstracts, several book chapters, and multiple patents issued and pending (>35). He has founded 3 companies: ProSorp Biotech, VesselTek Biomedical and Citrics Biomedical.
I was driven out of science by a harasser in the 1980s.”
Coming from a woman who has since helped to found a scientific society, served as director of the Genetics Society of America and presented her research on sexual harassment to a 2018 National Academies panel, it is a surprising statement. But Sherry Marts left academia after finishing her Ph.D. at Duke and never went back.
2018 has been a banner year for confronting sexual harassment in science. The National Academies of Sciences, Engineering and Medicine published a report on the high prevalence of harassment of women in science, and the National Institutes of Health and National Science Foundation are updating their sexual harassment policies. It appears that science might be catching up with the #MeToo movement, which has raised awareness of workplace sexual harassment. However, critics say that large institutions are moving too incrementally and could do much more.