Engineering Diversity

Author Archive

Research advances technology of AI assistance for anesthesiologists
Emery Brown | February 14, 2022

A new study by researchers at MIT and Massachusetts General Hospital (MGH) suggests the day may be approaching when advanced artificial intelligence systems could assist anesthesiologists in the operating room.

In a special edition of Artificial Intelligence in Medicine, the team of neuroscientists, engineers, and physicians demonstrated a machine learning algorithm for continuously automating dosing of the anesthetic drug propofol. Using an application of deep reinforcement learning, in which the software’s neural networks simultaneously learned how its dosing choices maintain unconsciousness and how to critique the efficacy of its own actions, the algorithm outperformed more traditional software in sophisticated, physiology-based simulations of patients. It also closely matched the performance of real anesthesiologists when showing what it would do to maintain unconsciousness given recorded data from nine real surgeries.

New tool harnesses immune cells from tumors to effectively fight cancer
Shana Kelley | January 28, 2022

Northwestern scientists have developed a new tool to harness immune cells from tumors to fight cancer rapidly and effectively, published in the journal Nature Biomedical Engineering.

Their findings showed a dramatic shrinkage in tumors in mice compared to traditional cell therapy methods. With a novel microfluidic device that could be 3D printed, the team multiplied, sorted through and harvested hundreds of millions of cells, recovering 400 percent more of the tumor-eating cells than current approaches.

Achilefu recruited to lead new Department of Biomedical Engineering
Sam Achilefu | January 26, 2022

Molecular imaging expert Samuel Achilefu, Ph.D., will join UT Southwestern Feb. 1 as the first Chair of a new Department of Biomedical Engineering. Dr. Achilefu was recruited to UTSW from the Mallinckrodt Institute of Radiology at Washington University School of Medicine in St. Louis.

He worked at Washington University for more than 20 years, most recently as a Professor of Radiology, Medicine, Biomedical Engineering, and Biochemistry & Molecular Biophysics. He also served as Chief of the Optical Radiology Laboratory, Vice Chair for Innovation and Entrepreneurship at the Mallinckrodt Institute of Radiology, and co-leader of the Oncologic Imaging Program of the Siteman Cancer Center. Recently, Dr. Achilefu was elected to the National Academy of Medicine, considered one of the highest honors in the fields of health and medicine.

Researchers pilot ‘itty bitty’ device for earlier ovarian cancer detection
Jennifer Barton | January 18, 2022

Due to a lack of effective screening and diagnostic tools, more than three-fourths of ovarian cancer cases are not found until the cancer is in an advanced stage. As a result, fewer than half of all women with ovarian cancer survive more than five years after diagnosis.

Jennifer Barton, director of the University of Arizona BIO5 Institute and Thomas R. Brown Distinguished Chair in Biomedical Engineering, has spent years developing a device small enough to image the fallopian tubes – narrow ducts connecting the uterus to the ovaries – and search for signs of early-stage cancer. Dr. John Heusinkveld has now used the new imaging device in study participants for the first time, as part of a pilot human trial.

Nanotherapy offers new hope for the treatment of Type 1 diabetes
Guillermo Ameer | January 17, 2022

Individuals living with Type 1 diabetes must carefully follow prescribed insulin regimens every day, receiving injections of the hormone via syringe, insulin pump or some other device. And without viable long-term treatments, this course of treatment is a lifelong sentence.

Pancreatic islets control insulin production when blood sugar levels change, and in Type 1 diabetes, the body’s immune system attacks and destroys such insulin-producing cells. Islet transplantation has emerged over the past few decades as a potential cure for Type 1 diabetes. With healthy transplanted islets, Type 1 diabetes patients may no longer need insulin injections, but transplantation efforts have faced setbacks as the immune system continues to eventually reject new islets. Current immunosuppressive drugs offer inadequate protection for transplanted cells and tissues and are plagued by undesirable side effects.

Accomplished biomedical engineer, academic leader named Brown School of Engineering dean
Tejal Desai | January 12, 2022

Tejal Desai, an accomplished biomedical engineer and academic leader who earned a bachelor’s degree with Brown’s Class of 1994, has been appointed the next dean of Brown University’s School of Engineering.

An expert in applying micro- and nanoscale technologies to create new ways to deliver medicine to targeted sites in the human body, Desai is a professor and a former longtime chair of the Department of Bioengineering and Therapeutic Sciences at the University of California San Francisco, and inaugural director of UCSF’s Health Innovations Via Engineering (HIVE) initiative.

Ultrashort-pulse lasers kill bacterial superbugs, spores
Samuel Achilefu | November 23, 2021

Life-threatening bacteria are becoming ever more resistant to antibiotics, making the search for alternatives to antibiotics an increasingly urgent challenge. For certain applications, one alternative may be a special type of laser.

Researchers at Washington University School of Medicine in St. Louis have found that lasers that emit ultrashort pulses of light can kill multidrug-resistant bacteria and hardy bacterial spores. The findings, available online in the Journal of Biophotonics, open up the possibility of using such lasers to destroy bacteria that are hard to kill by other means. The researchers previously have shown that such lasers don’t damage human cells, making it possible to envision using the lasers to sterilize wounds or disinfect blood products.

A Stunning 3D Map Of Blood Vessels And Cells In A Mouse Skull Could Help Scientists Make New Bones
Warren Grayson | November 19, 2021

Johns Hopkins Medicine scientists have used glowing chemicals and other techniques to create a 3D map of the blood vessels and self-renewing “stem” cells that line and penetrate a mouse skull. The map provides precise locations of blood vessels and stem cells that scientists could eventually use to repair wounds and generate new bone and tissue in the skull.

“We need to see what’s happening inside the skull, including the relative locations of blood vessels and cells and how their organization changes during injury and over time,” says Warren Grayson, Ph.D., professor of biomedical engineering and director of the Laboratory for Craniofacial and Orthopaedic Tissue Engineering at the Johns Hopkins University School of Medicine. His lab focuses on developing biomaterials and transplanting stem cells into the skull to re-create missing bone tissue.

New imaging technology could buy time for pancreatic cancer patients
Marvin Doyley | November 18, 2021

The insidiousness of pancreatic cancer is how it develops without showing any definitive symptoms. In most cases, by the time it is diagnosed, it is beyond cure.

And yet, for 10 to 20 percent of patients, pancreatic cancer is caught soon enough, before it has metastasized. This provides surgeons a narrow window of time to try to treat the tumors, shrinking them enough to safely remove them.

University of Rochester engineers, imaging scientists, surgeons, and immunologists are working together on a novel imaging technology to help surgeons make the most of that narrow time frame before the cancer spreads.

Sylvia Wilson Thomas named interim VP of Research & Innovation
Sylvia Wilson Thomas | November 17, 2021

USF President Rhea Law has named College of Engineering Professor Sylvia Wilson Thomas, a pioneering researcher whose national leadership and advocacy is opening the field of engineering to historically underrepresented students, as interim vice president for USF Research & Innovation.

In her new duties, Dr. Thomas will lead the division of the university responsible for managing research proposals, grants and contracts, as well as USF’s thriving innovation enterprise, which consists of the Technology Transfer Office, the USF Research Park and the Tampa Bay Technology Incubator. Already a member of the USF Research Foundation Board, Dr. Thomas will now serve as the foundation’s president and CEO.

Headband device suitable for use at home with young ADHD patients
Audrey Bowden | November 16, 2021

Vanderbilt biomedical engineering professor has developed a prototype headband to measure brain activity that could have widespread application in studying and ultimately treating ADHD and other neurological disorders.

The device is lightweight, portable, and inexpensive to construct. Prototype components cost less than $250, compared to costs exceeding $10,000 for commercial systems.

Audrey Bowden, associate professor of biomedical engineering, and Hadi Hosseini, a colleague at Stanford University, set out to develop a simple device that children and teens diagnosed with attention deficit disorders could wear at home. Their initial prototype is a single-channel functional near-infrared spectroscopy (fNIRS) headband. Functional neuroimaging is a general term for technologies that spatially map brain activity over time.

New Synthetic Cancer Immunotherapy Effective in Mouse Study
Jennifer Cochran | November 12, 2021

Stanford researchers have developed a new synthetic molecule, called PIP-CpG, that combines a tumor-targeting agent with a molecule that triggers immune activation. This treatment, can be administered intravenously and can make its way to multiple tumor sites, where it recruits immune cells against cancer.

Three doses of this new immunotherapy prolonged the survival of six of nine laboratory mice with an aggressive triple negative breast cancer. Of the six, three appeared cured of their cancer over the duration of the months long study. A single dose of this molecule induced complete tumor regression in five of ten mice. The synthetic molecule showed similar results in a mouse model of pancreatic cancer.

New chair of UW Department of Bioengineering named
Princess Imoukhuede | November 2, 2021

Princess Imoukhuede, a leader in systems biology research, engineering education, and academic diversity initiatives, has been named the new chair of the Department of Bioengineering at the University of Washington in Seattle. The department is located in both the UW College of Engineering and the UW School of Medicine. Her appointment is effective Jan. 1, 2022. She will hold the Hunter and Dorothy Simpson Endowed Chair and Professorship. Imoukhuede (pronounced I-muh-KWU-e-de) is currently an associate professor of bioengineering and director of diversity initiatives in the McKelvey School of Engineering at Washington University in St. Louis.

Seven AIMBE Fellows Elected to National Academy of Medicine
Sam Achilefu et al. | October 18, 2021

AIMBE congratulates the following Fellows that have been recognized as the newest members of the National Academy of Medicine. To date, 101 of AIMBE Fellows have been elected to the National Academy of Medicine. 2021 newly-elected NAM members from AIMBE are:

  • Samuel Achilefu, Ph.D. 
  • Guillermo Ameer, Sc.D.
  • Yuman Fong, MD
  • Andres J. Garcia, Ph.D. 
  • Linda G. Griffith, Ph.D. 
  • Elisa E. Konofagou, Ph.D. 
  • Carla M. Pugh, MD, Ph.D., FACS 

Prototype headband device developed for home use with young ADHD patients
Audrey Bowden | October 18, 2021

A Vanderbilt biomedical engineering professor has developed a prototype headband to measure brain activity that could have widespread application in studying and ultimately treating ADHD and other neurological disorders.

The device is lightweight, portable, and inexpensive to construct. Prototype components cost less than $250, compared to costs exceeding $10,000 for commercial systems.

Ranu Jung to Lead Institute for Integrative and Innovative Research
Ranu Jung | October 13, 2021

Ranu Jung has been named the founding executive director of the Institute for Integrative and Innovative Research (I³R). She will begin in December.

“We are thrilled to welcome Dr. Jung to the University of Arkansas,” said Charles Robinson, interim chancellor. “The Institute for Integrative and Innovative Research will propel the University of Arkansas as a global leader in discovery and applied innovation, and Dr. Jung is the ideal leader to help take us there. She is a world-renowned researcher and visionary.”

Newly developed gel helps improve the effectiveness of immunotherapy in glioblastoma
Frances Ligler | October 9, 2021

Pairing a newly developed gel with immunotherapy that was delivered to post-surgical mouse brains with glioblastoma, a highly malignant and deadly cancer, improved the immunotherapy’s effectiveness, report researchers from the University of North Carolina Lineberger Comprehensive Cancer Center and colleagues. The findings appeared on Oct. 6, 2021, in Science Advances.

The researchers used CAR-T cell (chimeric antigen receptor-T cell) immunotherapy, which involves harvesting immune-system T cells from a patient and genetically re-engineering them in the lab to recognize targets on the surface of cancer cells. In this mouse study, the CAR-T cells and gel were placed to fill in the area where a glioblastoma tumor had just been surgically removed. Previous studies have shown that administering T cells alone have produced limited benefit.

Team to create framework for evaluating AI-based medical imaging
Kyle Myers | October 8, 2021

Artificial intelligence (AI) is showing promise in multiple medical imaging applications. Yet rigorous evaluation of these methods is important before they are introduced into clinical practice.

A multi-institutional and multiagency team led by researchers at Washington University in St. Louis is outlining a framework for objective task-based evaluation of AI-based methods and outlining the key role that physicians play in these evaluations. They also are providing techniques to conduct such evaluations, particularly in positron emission tomography (PET).

Bio-Inspired Autonomous Materials
Megan Valentine | October 5, 2021

Megan Valentine, a professor of mechanical engineering and co-director of the California NanoSystems Institute at UC Santa Barbara, has been awarded a $1.8 million collaborative grant by the National Science Foundation to design and create next-generation materials inspired and empowered by biological cells. Valentine will be working alongside a team of physicists, biologists and engineers, four of whom are women.

Led by Rae Robertson-Anderson, a professor of physics and biophysics at the University of San Diego, the team also includes Jennifer Ross at Syracuse University, Moumita Das at Rochester Institute of Technology, and Michael Rust at the University of Chicago.

Northwestern-invented biomaterial technology moves from lab bench to the orthopaedic market
Guillermo Ameer | September 22, 2021

Northwestern biomedical engineer Guillermo A. Ameer has achieved a rare, major accomplishment. A medical product based on novel biomaterials pioneered in his laboratory will be widely available for use in musculoskeletal surgeries to directly benefit patients.

The biomaterial technology, called CITREGEN™, developed by the start-up company Acuitive Technologies, Inc., is featured in Stryker Corporation’s CITRELOCK™, an innovative device that will debut this week at the American Orthopaedic Foot and Ankle Society’s annual meeting in Charlotte, N.C. The CITRELOCK™ Tendon Fixation Device System is used to attach soft tissue grafts to bone in reconstruction surgeries and provides surgeons a differentiated design due to Ameer’s biomaterial. 

Institute Professor Paula Hammond named to White House science council
Paula Hammond | September 22, 2021

Paula Hammond, an MIT Institute Professor and head of MIT’s Department of Chemical Engineering, has been chosen to serve on the President’s Council of Advisors on Science and Technology (PCAST), the White House announced today.

The council advises the president on matters involving science, technology, education, and innovation policy. It also provides the White House with scientific and technical information that is needed to inform public policy relating to the U.S. economy, U.S. workers, and national security.

Statistical model defines ketamine anesthesia’s effects on the brain
Emery Brown | September 21, 2021

Neuroscientists at MIT and Massachusetts General Hospital develop a statistical framework that describes brain-state changes patients experience under ketamine-induced anesthesia.

By developing the first statistical model to finely characterize how ketamine anesthesia affects the brain, a team of researchers at MIT’s Picower Institute for Learning and Memory and Massachusetts General Hospital have laid new groundwork for three advances: understanding how ketamine induces anesthesia; monitoring the unconsciousness of patients in surgery; and applying a new method of analyzing brain activity.

Plants as mRNA Factories for Edible Vaccines
Nicole Steinmetz | September 17, 2021

University of California-Riverside (UCR) researchers say they are studying whether they can turn edible plants like lettuce into mRNA vaccine factories.

One of the challenges with this new technology is that it must be kept cold to maintain stability during transport and storage. If this new project is successful, plant-based mRNA vaccines, which can be eaten, could overcome this challenge with the ability to be stored at room temperature.

Researchers design sensors to rapidly detect plant hormones
Mary Chan-Park | September 13, 2021

Researchers from the Disruptive and Sustainable Technologies for Agricultural Precision (DiSTAP) interdisciplinary research group of the Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, and their local collaborators from Temasek Life Sciences Laboratory (TLL) and Nanyang Technological University (NTU), have developed the first-ever nanosensor to enable rapid testing of synthetic auxin plant hormones. The novel nanosensors are safer and less tedious than existing techniques for testing plants’ response to compounds such as herbicide, and can be transformative in improving agricultural production and our understanding of plant growth.

A fountain of youth for aging muscles
Helen Blau | September 2, 2021

Regenerative medicine could hold the keys to rejuvenating older muscles, and research supporting that will be featured at the Mayo Clinic Symposium on Regenerative Medicine and Surgery. Preclinical research by Helen Blau, Ph.D., Stanford University School of Medicine, discovered a protein that triggers muscle loss and a way to block it to restore youthful muscle strength. Dr. Blau, director of the Baxter Laboratory for Stem Cell Biology at Stanford University School of Medicine, will present her research in a virtual keynote speech.

Building a better chemical factory – out of microbes
Kristala Prather | August 24, 2021

Metabolic engineers have a problem: cells are selfish. The scientists want to use microbes to produce chemical compounds for industrial applications. The microbes prefer to concentrate on their own growth.

Kristala L. Jones Prather ’94 has devised a tool that satisfies both conflicting objectives. Her metabolite valve acts like a train switch: it senses when a cell culture has reproduced enough to sustain itself and then redirects metabolic flux—the movement of molecules in a pathway—down the track that synthesizes the desired compound. The results: greater yield of the product and sufficient cell growth to keep the culture healthy and productive.

Revving Up to Advance Battery Research for Electric Vehicles
Esther Takeuchi | August 24, 2021

Stony Brook University’s Institute for Electrochemically Stored Energy, through the Research Foundation of SUNY, has received a major grant from the U.S Department of Energy (DOE) to further develop battery technology that could potentially be used in the creation of more efficient electric vehicles (EVs). The research, led by Esther Takeuchi, PhD, is funded through the DOE’s Office of Energy Efficiency and Renewable Energy, Vehicles Technology Office, and is part of a national research initiative to accelerate advancements in zero-emissions vehicles. The grant totals $2,285,813, effective October 1, 2021, and runs through December 2024.

Locascio Nominated to Return to NIST as Director
Laurie Locascio | July 22, 2021

President Biden announced on July 16 that he is nominating Laurie Locascio to be director of the National Institute of Standards and Technology, a $1 billion agency within the Commerce Department. Locascio spent most of her career at NIST, joining as a bioengineering researcher in 1986 and ultimately taking on a series of senior leadership roles before leaving the agency in 2017. Since then, she has been vice president for research at the Baltimore and College Park campuses of the University of Maryland.

Pending her confirmation by the Senate, Locascio will return to the agency at a moment when its responsibilities are expanding and lawmakers are proposing it play a substantial role in national innovation initiatives currently under consideration in Congress. The Biden administration is likewise taking a significant interest in NIST, proposing to expand its budget by 45% in the next fiscal year.

A noninvasive test to detect cancer cells and pinpoint their location
Sangeeta Bhatia | July 15, 2021

Most of the tests that doctors use to diagnose cancer — such as mammography, colonoscopy, and CT scans — are based on imaging. More recently, researchers have also developed molecular diagnostics that can detect specific cancer-associated molecules that circulate in bodily fluids like blood or urine.

MIT engineers have now created a new diagnostic nanoparticle that combines both of these features: It can reveal the presence of cancerous proteins through a urine test, and it functions as an imaging agent, pinpointing the tumor location. In principle, this diagnostic could be used to detect cancer anywhere in the body, including tumors that have metastasized from their original locations.

Interdisciplinary team researches potential treatments for intervertebral disc disease
Lori Setton | July 13, 2021

Intervertebral discs provide load support and motion between vertebrae in the spine, but when they start to break down and compress due to aging, disease or injury, a person experiences significant pain and reduced mobility. An interdisciplinary team of researchers at Washington University in St. Louis found a way to deliver new cells to the cushioning material in intervertebral discs that may restore their height, which could reduce pain and improve mobility.

Lori Setton, the Lucy & Stanley Lopata Distinguished Professor of Biomedical Engineering and chair of the Department of Biomedical Engineering in the McKelvey School of Engineering, led a team of biomedical engineering researchers in the McKelvey School of Engineering and researchers from the Department of Orthopaedic Surgery in the School of Medicine to develop a hydrogel modified with peptides that control cell attachment and cell fate.

Opening Blood-Brain Barrier with Focused Ultrasound
Elisa Konofagou | July 10, 2021

Ultrasound is typically synonymous with prenatal care, but soon an emerging platform called focused ultrasound could treat cancer.

In a new clinical trial, oncologists Stergios Zacharoulis, MD, professor of pediatrics at Columbia’s Vagelos College of Physicians & Surgeons, and Cheng-Chia Wu, MD, PhD, assistant professor of radiation oncology, are using a focused ultrasound technique developed by Elisa Konofagou, PhD, professor of biomedical engineering and radiology at Columbia Engineering to more effectively and safely deliver chemotherapy for pediatric patients with an aggressive type of brain cancer, diffuse intrinsic pontine glioma (DIPG). The new technique works to temporarily open the blood-brain barrier, a natural protective layer in our brain, that blocks pathogens, bacteria, viruses, and other detrimental microoganisms circulating in the bloodstream from entering the central nervous system. The blood-brain barrier also limits the ability of systemic medications like chemotherapy from reaching brain tumors, making it a key challenge in effectively delivering therapies for brain tumors.

NAACP to Present Prestigious Spingarn Medal to UConn’s Dr. Cato T. Laurencin at 112th Annual Convention
Cato Laurencin | July 6, 2021

Professor Cato T. Laurencin of the University of Connecticut is the 2021 recipient of the prestigious Spingarn Medal, the highest honor of the National Association for the Advancement of Colored People (NAACP).

“This is the most iconic award of the NAACP,” says Laurencin, who serves as the University Professor and Albert and Wilda Van Dusen Distinguished Endowed Professor of Orthopaedic Surgery, Professor of Chemical Engineering, Professor of Materials Science and Engineering and Professor of Biomedical Engineering at UConn.

Synthetic biology circuits can respond within seconds
Bonnie Berger | July 1, 2021

Synthetic biology offers a way to engineer cells to perform novel functions, such as glowing with fluorescent light when they detect a certain chemical. Usually, this is done by altering cells so they express genes that can be triggered by a certain input.

However, there is often a long lag time between an event such as detecting a molecule and the resulting output, because of the time required for cells to transcribe and translate the necessary genes. MIT synthetic biologists have now developed an alternative approach to designing such circuits, which relies exclusively on fast, reversible protein-protein interactions. This means that there’s no waiting for genes to be transcribed or translated into proteins, so circuits can be turned on much faster — within seconds.

Director Lander, the time is now
Lola Eniola-Adefeso and Hana El-Samad | July 2, 2021

The Biden administration’s decision to elevate the Director of the White House Office of Science and Technology Policy (OSTP) to a cabinet-level position is a win for science. Eric Lander, confirmed in May by the Senate, is now advising the president on the scientific, engineering, and technological policies of the US government. As Dr. Lander carries out this task, we hope that he keeps in mind what President Biden asked him in a letter in January: “How can we guarantee that the fruits of science and technology are fully shared across America and among all Americans?”

The challenges ahead are formidable. The devastating health and economic impacts of two major crises—climate change and the COVID-19 pandemic—have revealed deep societal fault lines that prevent the United States from drawing on the talents of all Americans to tackle these problems. Thus, there is an urgent need for smart and socially minded policy-making.

Rethinking Plastics
LaShanda Korley | July 1, 2021

People lived without plastic until the last century or so, but most of us would find it hard to imagine how.

Plastics now are everywhere in our lives, providing low-cost convenience and other benefits in countless applications. They can be shaped to almost any task, from wispy films to squishy children’s toys and hard-core components. They have shown themselves vital in medicine and have been pivotal in the global effort to slow the spread of the COVID-19 pandemic over the past 16 months.

Plastics seem indispensable these days.

Unfortunately for the long-term, they are also nearly indestructible. Our planet now bears the weight of more than seven billion tons of plastics, with more being produced every day. An ever-growing waste stream clogs our landfills, pollutes our waterways and poses an urgent crisis for our planet.

NSF selects Susan S. Margulies to head the Engineering Directorate
Susan Margulies | July 1, 2021

The U.S. National Science Foundation has selected Susan S. Margulies to head the Directorate for Engineering. She is the first biomedical engineer to lead the engineering directorate, which supports fundamental research in emerging and frontier basic research areas.

Since 2017, Margulies has been professor and chair of the Wallace H. Coulter Department of Biomedical Engineering, housed jointly at the Georgia Institute of Technology and Emory University. Previously, she held positions as professor of bioengineering and neurosurgery at the University of Pennsylvania. She has won numerous awards and honors, including fellowships from the American Institute of Medical and Biological Engineering, the American Society of Mechanical Engineers, and the Biomedical Engineering Society, as well as numerous other recognitions throughout her career. Margulies is a member of the National Academy of Engineering and the National Academy of Medicine.

Melina R. Kibbe Named Dean of UVA’s School of Medicine
Melina Kibbe | June 9, 2021

The University of Virginia has named pioneering physician leader Melina R. Kibbe, MD, as 17th dean of the UVA School of Medicine and chief health affairs officer for UVA Health.

Dr. Kibbe is an outstanding clinician, researcher and highly respected educator. She comes to UVA effective Sept. 15 from her role as the Colin G. Thomas Jr. Distinguished Professor and Chair of the Department of Surgery at the University of North Carolina at Chapel Hill, where she also holds an appointment in the Department of Biomedical Engineering.

Visiting professor wins ScienceFather award for IVF research
Urmila Diwekar | June 7, 2021

The most common technique, and often the last resort, for couples struggling to conceive a child is in vitro fertilization. However, despite many advances since the first IVF baby was conceived in 1978, the procedure is still expensive and has a success rate of around 20% to 35% on the first attempt.

But thanks to the work of Richard and Loan Hill Visiting Professor Urmila Diwekar, IVF treatments may soon be personalized to individual patients to increase their chance of success. Diwekar recently received a New Science Inventions Award from ScienceFather for her work developing a mathematical procedure to provide a customized drug dosage during an IVF treatment.

Building better bubbles for ultrasound could enhance image quality, facilitate treatments
Agata Exner | May 25, 2021

Ultrasound is a non-invasive technique that uses sound waves to either generate images of tissues inside of the body, or to interact with tissues as a therapeutic tool – to break up gallstones, increase blood flow, or ablate tumors, for instance. Ultrasound contrast agents, which are typically tiny bubbles filled with gas, can enhance the reflection of ultrasound waves to improve the quality of an ultrasound image. However, commercially available contrast agents are confined to the blood vessels, typically remain in the bloodstream for less than 10 minutes, and are used in only a handful of settings in the United States.

But what if ultrasound contrast agents could leave the vasculature, persist for an extended period of time, and be customized for a specific application.

Linda Petzold Elected to National Academy of Sciences
Linda Petzold | May 15, 2021

For their distinguished and continuing achievements in original research, UC Santa Barbara professors Denise Montell, Linda Petzold and Glenn Fredrickson have been elected to the National Academy of Sciences (NAS). They are among 120 members, and 30 international members, to join the academy this year.

Membership in the NAS is one of the most prestigious recognitions awarded to a scientist or engineer in the United States.

Implantable ‘Living Pharmacy’ Could Control Body’s Sleep/Wake Cycles
Guillermo Ameer | May 13, 2021

A Northwestern University-led team of researchers has signed a cooperative agreement with the Defense Advanced Research Projects Agency (DARPA) to develop a wireless, fully implantable device that will control the body’s circadian clock, halving the time it takes to recover from disrupted sleep/wake cycles.

The first phase of the highly interdisciplinary program will focus on developing the implant. The second phase, contingent on the first, will validate the device. If that milestone is met, then researchers will test the device in human trials, as part of the third phase. The full funding corresponds to $33 million over four-and-a-half years.

Norma Alcantar to be Inducted into Florida Inventors Hall of Fame
Norma Alcantar | April 29, 2021

USF Professor Norma Alcantar—who engineered an ancient practice of cleaning water with cactus mucilage to create modern technologies—is among seven new inductees to the Florida Inventors Hall of Fame announced today.

Alcantar joins noted inventors Dean Kamen, often referred to as the modern Thomas Edison due to the breadth and scope of his inventions, and Mark Dean, who holds three patents on the original IBM personal computer and is the co-inventor of the ISA bus which revolutionized modern computing. The full list of inductees can be found…

These cellular clocks help explain why elephants are bigger than mice
Helen Blau | April 27, 2021

In her laboratory in Barcelona, Spain, Miki Ebisuya has built a clock without cogs, springs or numbers. This clock doesn’t tick. It is made of genes and proteins, and it keeps time in a layer of cells that Ebisuya’s team has grown in its lab. This biological clock is tiny, but it could help to explain some of the most conspicuous differences between animal species.

Animal cells bustle with activity, and the pace varies between species. In all observed instances, mouse cells run faster than human cells, which tick faster than whale cells. These differences affect how big an animal gets, how its parts are arranged and perhaps even how long it will live. But biologists have long wondered what cellular timekeepers control these speeds, and why they vary.

Professor Cato T. Laurencin Has Been Elected to the National Academy of Sciences
Cato Laurencin | April 27, 2021

On April 26, 2021 the National Academy of Sciences announced that Dr. Cato T. Laurencin was elected as a new member, making him the first surgeon to be elected to membership in the three National Academies of Sciences, Engineering and Medicine and Fellow of the National Academy of Inventors.

Laurencin is known as a world leader in biomaterials, polymeric materials science, nanotechnology, stem cell science, drug delivery systems, and a field he has pioneered, regenerative engineering. Laurencin’s papers and patents have had broad impact on human health, including pioneering the use of nanotechnology in musculoskeletal regeneration and ushering in a new era in orthopaedic therapies. For this work, Dr. Laurencin received the National Medal of Technology and Innovation, the highest honor bestowed in America for technological achievement, from President Barack Obama.

Jennifer West Named Dean of Engineering and Applied Science
Jennifer West | April 23, 2021

The University of Virginia today announced the appointment of Jennifer L. West as the 14th dean of the School of Engineering and Applied Science, effective July 1.

West is currently the Associate Dean for Ph.D. Education and the Fitzpatrick Family University Professor in Biomedical Engineering and Mechanical Engineering & Materials Science at the Pratt School of Engineering at Duke University. West comes to UVA with a formidable record of accomplishment and experience as a transformational researcher, award-winning teacher and mentor, and inventor and entrepreneur, with 25 years of experience in engineering education and leadership.

Micro-molded ‘ice cube tray’ scaffold is next step in returning sight to injured retinas
Sarah Gong | April 21, 2021

Tens of millions of people worldwide are affected by diseases like macular degeneration or have had accidents that permanently damage the light-sensitive photoreceptors within their retinas that enable vision.

The human body is not capable of regenerating those photoreceptors, but new advances by medical researchers and engineers at the University of Wisconsin–Madison may provide hope for those suffering from vision loss. They described their work today in the journal Science Advances.

Ameer Named Fellow of Materials Research Society
Guillermo Ameer | April 1, 2021

Northwestern Engineering’s Guillermo A. Ameer has been named a fellow of the Materials Research Society for his contributions to regenerative engineering through pioneering work developing antioxidant citrate-based polymers that are useful for musculoskeletal, cardiovascular, dermal, and urological applications, rendering them enabling technologies to improve health.

Ameer is the Daniel Hale Williams Professor of Biomedical Engineering in the McCormick School of Engineering and a professor of surgery in Northwestern’s Feinberg School of Medicine. He also is founding director of Northwestern’s Center for Advanced Regenerative Engineering.

Exploiting cancer cells to aid in their own destruction
Melody Swartz | March 24, 2021

Immunotherapy, which recruits the body’s own immune system to attack cancer, has given many cancer patients a new avenue to treat the disease. But many cancer immunotherapy treatments can be expensive, have devastating side effects, and only work in a fraction of patients.

Researchers at the Pritzker School of Molecular Engineering at the University of Chicago have developed a new therapeutic vaccine that uses a patient’s own tumor cells to train their immune system to find and kill cancer.

The vaccine, which is injected into the skin just like a traditional vaccine, stopped melanoma tumor growth in mice. It even worked long-term, destroying new tumors long after the initial injection.

Ultrasound outperforms legacy technique at pinpointing heart arrhythmias
Elisa Konofagou | March 22, 2021

A commonly available ultrasound technique proved superior to a long-used approach at spotting abnormal heart rhythms and may help treat patients with this worldwide problem, according to recently published research.

The method—electromechanical wave imaging (EWI)—creates a 3D cardiac map to pinpoint electromechanical activity that causes arrhythmias, investigators with Columbia University in New York reported in Science Translational Medicine. Most care settings have this portable machine handy and can use it during ablation procedures to accurately guide the catheter to the proper area.