Engineering Diversity

FELLOW NEWS

Northwestern-invented biomaterial technology moves from lab bench to the orthopaedic market
Guillermo Ameer | September 22, 2021

Northwestern-invented biomaterial technology moves from lab bench to the orthopaedic market
Guillermo Ameer | September 22, 2021

Northwestern biomedical engineer Guillermo A. Ameer has achieved a rare, major accomplishment. A medical product based on novel biomaterials pioneered in his laboratory will be widely available for use in musculoskeletal surgeries to directly benefit patients.

The biomaterial technology, called CITREGEN™, developed by the start-up company Acuitive Technologies, Inc., is featured in Stryker Corporation’s CITRELOCK™, an innovative device that will debut this week at the American Orthopaedic Foot and Ankle Society’s annual meeting in Charlotte, N.C. The CITRELOCK™ Tendon Fixation Device System is used to attach soft tissue grafts to bone in reconstruction surgeries and provides surgeons a differentiated design due to Ameer’s biomaterial. 

Continue reading.

Institute Professor Paula Hammond named to White House science council
Paula Hammond | September 22, 2021

Institute Professor Paula Hammond named to White House science council
Paula Hammond | September 22, 2021

Paula Hammond, an MIT Institute Professor and head of MIT’s Department of Chemical Engineering, has been chosen to serve on the President’s Council of Advisors on Science and Technology (PCAST), the White House announced today.

The council advises the president on matters involving science, technology, education, and innovation policy. It also provides the White House with scientific and technical information that is needed to inform public policy relating to the U.S. economy, U.S. workers, and national security.

Continue reading.

Statistical model defines ketamine anesthesia’s effects on the brain
Emery Brown | September 21, 2021

Statistical model defines ketamine anesthesia’s effects on the brain
Emery Brown | September 21, 2021

Neuroscientists at MIT and Massachusetts General Hospital develop a statistical framework that describes brain-state changes patients experience under ketamine-induced anesthesia.

By developing the first statistical model to finely characterize how ketamine anesthesia affects the brain, a team of researchers at MIT’s Picower Institute for Learning and Memory and Massachusetts General Hospital have laid new groundwork for three advances: understanding how ketamine induces anesthesia; monitoring the unconsciousness of patients in surgery; and applying a new method of analyzing brain activity.

Continue reading.

Plants as mRNA Factories for Edible Vaccines
Nicole Steinmetz | September 17, 2021

Plants as mRNA Factories for Edible Vaccines
Nicole Steinmetz | September 17, 2021

University of California-Riverside (UCR) researchers say they are studying whether they can turn edible plants like lettuce into mRNA vaccine factories.

One of the challenges with this new technology is that it must be kept cold to maintain stability during transport and storage. If this new project is successful, plant-based mRNA vaccines, which can be eaten, could overcome this challenge with the ability to be stored at room temperature.

Continue reading.

Researchers design sensors to rapidly detect plant hormones
Mary Chan-Park | September 13, 2021

Researchers design sensors to rapidly detect plant hormones
Mary Chan-Park | September 13, 2021

Researchers from the Disruptive and Sustainable Technologies for Agricultural Precision (DiSTAP) interdisciplinary research group of the Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, and their local collaborators from Temasek Life Sciences Laboratory (TLL) and Nanyang Technological University (NTU), have developed the first-ever nanosensor to enable rapid testing of synthetic auxin plant hormones. The novel nanosensors are safer and less tedious than existing techniques for testing plants’ response to compounds such as herbicide, and can be transformative in improving agricultural production and our understanding of plant growth.

Continue reading.

A fountain of youth for aging muscles
Helen Blau | September 2, 2021

A fountain of youth for aging muscles
Helen Blau | September 2, 2021

Regenerative medicine could hold the keys to rejuvenating older muscles, and research supporting that will be featured at the Mayo Clinic Symposium on Regenerative Medicine and Surgery. Preclinical research by Helen Blau, Ph.D., Stanford University School of Medicine, discovered a protein that triggers muscle loss and a way to block it to restore youthful muscle strength. Dr. Blau, director of the Baxter Laboratory for Stem Cell Biology at Stanford University School of Medicine, will present her research in a virtual keynote speech.

Continue reading.

Building a better chemical factory – out of microbes
Kristala Prather | August 24, 2021

Building a better chemical factory – out of microbes
Kristala Prather | August 24, 2021

Metabolic engineers have a problem: cells are selfish. The scientists want to use microbes to produce chemical compounds for industrial applications. The microbes prefer to concentrate on their own growth.

Kristala L. Jones Prather ’94 has devised a tool that satisfies both conflicting objectives. Her metabolite valve acts like a train switch: it senses when a cell culture has reproduced enough to sustain itself and then redirects metabolic flux—the movement of molecules in a pathway—down the track that synthesizes the desired compound. The results: greater yield of the product and sufficient cell growth to keep the culture healthy and productive.

Continue reading.

Revving Up to Advance Battery Research for Electric Vehicles
Esther Takeuchi | August 24, 2021

Revving Up to Advance Battery Research for Electric Vehicles
Esther Takeuchi | August 24, 2021

Stony Brook University’s Institute for Electrochemically Stored Energy, through the Research Foundation of SUNY, has received a major grant from the U.S Department of Energy (DOE) to further develop battery technology that could potentially be used in the creation of more efficient electric vehicles (EVs). The research, led by Esther Takeuchi, PhD, is funded through the DOE’s Office of Energy Efficiency and Renewable Energy, Vehicles Technology Office, and is part of a national research initiative to accelerate advancements in zero-emissions vehicles. The grant totals $2,285,813, effective October 1, 2021, and runs through December 2024.

Continue reading.

Locascio Nominated to Return to NIST as Director
Laurie Locascio | July 22, 2021

Locascio Nominated to Return to NIST as Director
Laurie Locascio | July 22, 2021

President Biden announced on July 16 that he is nominating Laurie Locascio to be director of the National Institute of Standards and Technology, a $1 billion agency within the Commerce Department. Locascio spent most of her career at NIST, joining as a bioengineering researcher in 1986 and ultimately taking on a series of senior leadership roles before leaving the agency in 2017. Since then, she has been vice president for research at the Baltimore and College Park campuses of the University of Maryland.

Pending her confirmation by the Senate, Locascio will return to the agency at a moment when its responsibilities are expanding and lawmakers are proposing it play a substantial role in national innovation initiatives currently under consideration in Congress. The Biden administration is likewise taking a significant interest in NIST, proposing to expand its budget by 45% in the next fiscal year.

Continue reading.

A noninvasive test to detect cancer cells and pinpoint their location
Sangeeta Bhatia | July 15, 2021

A noninvasive test to detect cancer cells and pinpoint their location
Sangeeta Bhatia | July 15, 2021

Most of the tests that doctors use to diagnose cancer — such as mammography, colonoscopy, and CT scans — are based on imaging. More recently, researchers have also developed molecular diagnostics that can detect specific cancer-associated molecules that circulate in bodily fluids like blood or urine.

MIT engineers have now created a new diagnostic nanoparticle that combines both of these features: It can reveal the presence of cancerous proteins through a urine test, and it functions as an imaging agent, pinpointing the tumor location. In principle, this diagnostic could be used to detect cancer anywhere in the body, including tumors that have metastasized from their original locations.

Continue reading.

Interdisciplinary team researches potential treatments for intervertebral disc disease
Lori Setton | July 13, 2021

Interdisciplinary team researches potential treatments for intervertebral disc disease
Lori Setton | July 13, 2021

Intervertebral discs provide load support and motion between vertebrae in the spine, but when they start to break down and compress due to aging, disease or injury, a person experiences significant pain and reduced mobility. An interdisciplinary team of researchers at Washington University in St. Louis found a way to deliver new cells to the cushioning material in intervertebral discs that may restore their height, which could reduce pain and improve mobility.

Lori Setton, the Lucy & Stanley Lopata Distinguished Professor of Biomedical Engineering and chair of the Department of Biomedical Engineering in the McKelvey School of Engineering, led a team of biomedical engineering researchers in the McKelvey School of Engineering and researchers from the Department of Orthopaedic Surgery in the School of Medicine to develop a hydrogel modified with peptides that control cell attachment and cell fate.

Continue reading.

Opening Blood-Brain Barrier with Focused Ultrasound
Elisa Konofagou | July 10, 2021

Opening Blood-Brain Barrier with Focused Ultrasound
Elisa Konofagou | July 10, 2021

Ultrasound is typically synonymous with prenatal care, but soon an emerging platform called focused ultrasound could treat cancer.

In a new clinical trial, oncologists Stergios Zacharoulis, MD, professor of pediatrics at Columbia’s Vagelos College of Physicians & Surgeons, and Cheng-Chia Wu, MD, PhD, assistant professor of radiation oncology, are using a focused ultrasound technique developed by Elisa Konofagou, PhD, professor of biomedical engineering and radiology at Columbia Engineering to more effectively and safely deliver chemotherapy for pediatric patients with an aggressive type of brain cancer, diffuse intrinsic pontine glioma (DIPG). The new technique works to temporarily open the blood-brain barrier, a natural protective layer in our brain, that blocks pathogens, bacteria, viruses, and other detrimental microoganisms circulating in the bloodstream from entering the central nervous system. The blood-brain barrier also limits the ability of systemic medications like chemotherapy from reaching brain tumors, making it a key challenge in effectively delivering therapies for brain tumors.

Continue reading.

NAACP to Present Prestigious Spingarn Medal to UConn’s Dr. Cato T. Laurencin at 112th Annual Convention
Cato Laurencin | July 6, 2021

NAACP to Present Prestigious Spingarn Medal to UConn’s Dr. Cato T. Laurencin at 112th Annual Convention
Cato Laurencin | July 6, 2021

Professor Cato T. Laurencin of the University of Connecticut is the 2021 recipient of the prestigious Spingarn Medal, the highest honor of the National Association for the Advancement of Colored People (NAACP).

“This is the most iconic award of the NAACP,” says Laurencin, who serves as the University Professor and Albert and Wilda Van Dusen Distinguished Endowed Professor of Orthopaedic Surgery, Professor of Chemical Engineering, Professor of Materials Science and Engineering and Professor of Biomedical Engineering at UConn.

Continue reading.

Synthetic biology circuits can respond within seconds
Bonnie Berger | July 1, 2021

Synthetic biology circuits can respond within seconds
Bonnie Berger | July 1, 2021

Synthetic biology offers a way to engineer cells to perform novel functions, such as glowing with fluorescent light when they detect a certain chemical. Usually, this is done by altering cells so they express genes that can be triggered by a certain input.

However, there is often a long lag time between an event such as detecting a molecule and the resulting output, because of the time required for cells to transcribe and translate the necessary genes. MIT synthetic biologists have now developed an alternative approach to designing such circuits, which relies exclusively on fast, reversible protein-protein interactions. This means that there’s no waiting for genes to be transcribed or translated into proteins, so circuits can be turned on much faster — within seconds.

Continue reading.

Director Lander, the time is now
Lola Eniola-Adefeso and Hana El-Samad | July 2, 2021

Director Lander, the time is now
Lola Eniola-Adefeso and Hana El-Samad | July 2, 2021

The Biden administration’s decision to elevate the Director of the White House Office of Science and Technology Policy (OSTP) to a cabinet-level position is a win for science. Eric Lander, confirmed in May by the Senate, is now advising the president on the scientific, engineering, and technological policies of the US government. As Dr. Lander carries out this task, we hope that he keeps in mind what President Biden asked him in a letter in January: “How can we guarantee that the fruits of science and technology are fully shared across America and among all Americans?”

The challenges ahead are formidable. The devastating health and economic impacts of two major crises—climate change and the COVID-19 pandemic—have revealed deep societal fault lines that prevent the United States from drawing on the talents of all Americans to tackle these problems. Thus, there is an urgent need for smart and socially minded policy-making.

Continue reading.

Rethinking Plastics
LaShanda Korley | July 1, 2021

Rethinking Plastics
LaShanda Korley | July 1, 2021

People lived without plastic until the last century or so, but most of us would find it hard to imagine how.

Plastics now are everywhere in our lives, providing low-cost convenience and other benefits in countless applications. They can be shaped to almost any task, from wispy films to squishy children’s toys and hard-core components. They have shown themselves vital in medicine and have been pivotal in the global effort to slow the spread of the COVID-19 pandemic over the past 16 months.

Plastics seem indispensable these days.

Unfortunately for the long-term, they are also nearly indestructible. Our planet now bears the weight of more than seven billion tons of plastics, with more being produced every day. An ever-growing waste stream clogs our landfills, pollutes our waterways and poses an urgent crisis for our planet.

Continue reading.

NSF selects Susan S. Margulies to head the Engineering Directorate
Susan Margulies | July 1, 2021

NSF selects Susan S. Margulies to head the Engineering Directorate
Susan Margulies | July 1, 2021

The U.S. National Science Foundation has selected Susan S. Margulies to head the Directorate for Engineering. She is the first biomedical engineer to lead the engineering directorate, which supports fundamental research in emerging and frontier basic research areas.

Since 2017, Margulies has been professor and chair of the Wallace H. Coulter Department of Biomedical Engineering, housed jointly at the Georgia Institute of Technology and Emory University. Previously, she held positions as professor of bioengineering and neurosurgery at the University of Pennsylvania. She has won numerous awards and honors, including fellowships from the American Institute of Medical and Biological Engineering, the American Society of Mechanical Engineers, and the Biomedical Engineering Society, as well as numerous other recognitions throughout her career. Margulies is a member of the National Academy of Engineering and the National Academy of Medicine.

Continue reading.

Melina R. Kibbe Named Dean of UVA’s School of Medicine
Melina Kibbe | June 9, 2021

Melina R. Kibbe Named Dean of UVA’s School of Medicine
Melina Kibbe | June 9, 2021

The University of Virginia has named pioneering physician leader Melina R. Kibbe, MD, as 17th dean of the UVA School of Medicine and chief health affairs officer for UVA Health.

Dr. Kibbe is an outstanding clinician, researcher and highly respected educator. She comes to UVA effective Sept. 15 from her role as the Colin G. Thomas Jr. Distinguished Professor and Chair of the Department of Surgery at the University of North Carolina at Chapel Hill, where she also holds an appointment in the Department of Biomedical Engineering.

Continue reading.

Visiting professor wins ScienceFather award for IVF research
Urmila Diwekar | June 7, 2021

Visiting professor wins ScienceFather award for IVF research
Urmila Diwekar | June 7, 2021

The most common technique, and often the last resort, for couples struggling to conceive a child is in vitro fertilization. However, despite many advances since the first IVF baby was conceived in 1978, the procedure is still expensive and has a success rate of around 20% to 35% on the first attempt.

But thanks to the work of Richard and Loan Hill Visiting Professor Urmila Diwekar, IVF treatments may soon be personalized to individual patients to increase their chance of success. Diwekar recently received a New Science Inventions Award from ScienceFather for her work developing a mathematical procedure to provide a customized drug dosage during an IVF treatment.

Continue reading.

Building better bubbles for ultrasound could enhance image quality, facilitate treatments
Agata Exner | May 25, 2021

Building better bubbles for ultrasound could enhance image quality, facilitate treatments
Agata Exner | May 25, 2021

Ultrasound is a non-invasive technique that uses sound waves to either generate images of tissues inside of the body, or to interact with tissues as a therapeutic tool – to break up gallstones, increase blood flow, or ablate tumors, for instance. Ultrasound contrast agents, which are typically tiny bubbles filled with gas, can enhance the reflection of ultrasound waves to improve the quality of an ultrasound image. However, commercially available contrast agents are confined to the blood vessels, typically remain in the bloodstream for less than 10 minutes, and are used in only a handful of settings in the United States.

But what if ultrasound contrast agents could leave the vasculature, persist for an extended period of time, and be customized for a specific application.

Continue reading.

Linda Petzold Elected to National Academy of Sciences
Linda Petzold | May 15, 2021

Linda Petzold Elected to National Academy of Sciences
Linda Petzold | May 15, 2021

For their distinguished and continuing achievements in original research, UC Santa Barbara professors Denise Montell, Linda Petzold and Glenn Fredrickson have been elected to the National Academy of Sciences (NAS). They are among 120 members, and 30 international members, to join the academy this year.

Membership in the NAS is one of the most prestigious recognitions awarded to a scientist or engineer in the United States.

Continue reading.

Implantable ‘Living Pharmacy’ Could Control Body’s Sleep/Wake Cycles
Guillermo Ameer | May 13, 2021

Implantable ‘Living Pharmacy’ Could Control Body’s Sleep/Wake Cycles
Guillermo Ameer | May 13, 2021

A Northwestern University-led team of researchers has signed a cooperative agreement with the Defense Advanced Research Projects Agency (DARPA) to develop a wireless, fully implantable device that will control the body’s circadian clock, halving the time it takes to recover from disrupted sleep/wake cycles.

The first phase of the highly interdisciplinary program will focus on developing the implant. The second phase, contingent on the first, will validate the device. If that milestone is met, then researchers will test the device in human trials, as part of the third phase. The full funding corresponds to $33 million over four-and-a-half years.

Continue reading.

Norma Alcantar to be Inducted into Florida Inventors Hall of Fame
Norma Alcantar | April 29, 2021

Norma Alcantar to be Inducted into Florida Inventors Hall of Fame
Norma Alcantar | April 29, 2021

USF Professor Norma Alcantar—who engineered an ancient practice of cleaning water with cactus mucilage to create modern technologies—is among seven new inductees to the Florida Inventors Hall of Fame announced today.

Alcantar joins noted inventors Dean Kamen, often referred to as the modern Thomas Edison due to the breadth and scope of his inventions, and Mark Dean, who holds three patents on the original IBM personal computer and is the co-inventor of the ISA bus which revolutionized modern computing. The full list of inductees can be found…

Continue reading.

These cellular clocks help explain why elephants are bigger than mice
Helen Blau | April 27, 2021

These cellular clocks help explain why elephants are bigger than mice
Helen Blau | April 27, 2021

In her laboratory in Barcelona, Spain, Miki Ebisuya has built a clock without cogs, springs or numbers. This clock doesn’t tick. It is made of genes and proteins, and it keeps time in a layer of cells that Ebisuya’s team has grown in its lab. This biological clock is tiny, but it could help to explain some of the most conspicuous differences between animal species.

Animal cells bustle with activity, and the pace varies between species. In all observed instances, mouse cells run faster than human cells, which tick faster than whale cells. These differences affect how big an animal gets, how its parts are arranged and perhaps even how long it will live. But biologists have long wondered what cellular timekeepers control these speeds, and why they vary.

Continue reading.

Professor Cato T. Laurencin Has Been Elected to the National Academy of Sciences
Cato Laurencin | April 27, 2021

Professor Cato T. Laurencin Has Been Elected to the National Academy of Sciences
Cato Laurencin | April 27, 2021

On April 26, 2021 the National Academy of Sciences announced that Dr. Cato T. Laurencin was elected as a new member, making him the first surgeon to be elected to membership in the three National Academies of Sciences, Engineering and Medicine and Fellow of the National Academy of Inventors.

Laurencin is known as a world leader in biomaterials, polymeric materials science, nanotechnology, stem cell science, drug delivery systems, and a field he has pioneered, regenerative engineering. Laurencin’s papers and patents have had broad impact on human health, including pioneering the use of nanotechnology in musculoskeletal regeneration and ushering in a new era in orthopaedic therapies. For this work, Dr. Laurencin received the National Medal of Technology and Innovation, the highest honor bestowed in America for technological achievement, from President Barack Obama.

Continue reading.

Jennifer West Named Dean of Engineering and Applied Science
Jennifer West | April 23, 2021

Jennifer West Named Dean of Engineering and Applied Science
Jennifer West | April 23, 2021

The University of Virginia today announced the appointment of Jennifer L. West as the 14th dean of the School of Engineering and Applied Science, effective July 1.

West is currently the Associate Dean for Ph.D. Education and the Fitzpatrick Family University Professor in Biomedical Engineering and Mechanical Engineering & Materials Science at the Pratt School of Engineering at Duke University. West comes to UVA with a formidable record of accomplishment and experience as a transformational researcher, award-winning teacher and mentor, and inventor and entrepreneur, with 25 years of experience in engineering education and leadership.

Continue reading.

Micro-molded ‘ice cube tray’ scaffold is next step in returning sight to injured retinas
Sarah Gong | April 21, 2021

Micro-molded ‘ice cube tray’ scaffold is next step in returning sight to injured retinas
Sarah Gong | April 21, 2021

Tens of millions of people worldwide are affected by diseases like macular degeneration or have had accidents that permanently damage the light-sensitive photoreceptors within their retinas that enable vision.

The human body is not capable of regenerating those photoreceptors, but new advances by medical researchers and engineers at the University of Wisconsin–Madison may provide hope for those suffering from vision loss. They described their work today in the journal Science Advances.

Continue reading.

Ameer Named Fellow of Materials Research Society
Guillermo Ameer | April 1, 2021

Ameer Named Fellow of Materials Research Society
Guillermo Ameer | April 1, 2021

Northwestern Engineering’s Guillermo A. Ameer has been named a fellow of the Materials Research Society for his contributions to regenerative engineering through pioneering work developing antioxidant citrate-based polymers that are useful for musculoskeletal, cardiovascular, dermal, and urological applications, rendering them enabling technologies to improve health.

Ameer is the Daniel Hale Williams Professor of Biomedical Engineering in the McCormick School of Engineering and a professor of surgery in Northwestern’s Feinberg School of Medicine. He also is founding director of Northwestern’s Center for Advanced Regenerative Engineering.

Continue reading.

Exploiting cancer cells to aid in their own destruction
Melody Swartz | March 24, 2021

Exploiting cancer cells to aid in their own destruction
Melody Swartz | March 24, 2021

Immunotherapy, which recruits the body’s own immune system to attack cancer, has given many cancer patients a new avenue to treat the disease. But many cancer immunotherapy treatments can be expensive, have devastating side effects, and only work in a fraction of patients.

Researchers at the Pritzker School of Molecular Engineering at the University of Chicago have developed a new therapeutic vaccine that uses a patient’s own tumor cells to train their immune system to find and kill cancer.

The vaccine, which is injected into the skin just like a traditional vaccine, stopped melanoma tumor growth in mice. It even worked long-term, destroying new tumors long after the initial injection.

Continue reading.

Ultrasound outperforms legacy technique at pinpointing heart arrhythmias
Elisa Konofagou | March 22, 2021

Ultrasound outperforms legacy technique at pinpointing heart arrhythmias
Elisa Konofagou | March 22, 2021

A commonly available ultrasound technique proved superior to a long-used approach at spotting abnormal heart rhythms and may help treat patients with this worldwide problem, according to recently published research.

The method—electromechanical wave imaging (EWI)—creates a 3D cardiac map to pinpoint electromechanical activity that causes arrhythmias, investigators with Columbia University in New York reported in Science Translational Medicine. Most care settings have this portable machine handy and can use it during ablation procedures to accurately guide the catheter to the proper area.

Continue reading.

Gordana Vunjak-Novakovic Receives AIMBE’s Highest Award
Gordana Vunjak-Novakovic | March 22, 2021

Gordana Vunjak-Novakovic Receives AIMBE’s Highest Award
Gordana Vunjak-Novakovic | March 22, 2021

AIMBE is honored to recognize Gordana Vunjak-Novakovic with its Pierre Galletti Award, the Institute’s highest accolade. Including years of contributions to AIMBE and the BME community, Vunjak-Novakovic is recognized for impactful innovations in technologies to generate, understand and utilize functional human tissues, especially in regenerative engineering, studies of development and disease, while inspiring the next generation of practitioners. This award is presented to an individual in recognition of his/her contributions to public awareness of medical and biological engineering, and to the advancement of biomedical public policy in science, engineering, and education.

Continue reading.

Researchers identify head impact rates in four major high school sports
Kristy Arbogast | March 17, 2021

Researchers identify head impact rates in four major high school sports
Kristy Arbogast | March 17, 2021

As high school athletes return to practice and games for a variety of sports, the threat of concussions remains. A new study from researchers at Children’s Hospital of Philadelphia (CHOP) used head impact sensors in four different sports and studied male and female athletes to determine which of these sports put students at the highest risk for head impacts that could lead to concussions. The findings were published online by the Orthopaedic Journal of Sports Medicine.

“Adolescents are particularly vulnerable to concussion because they frequently participate in sporting and recreational activities and have slower recovery periods compared to adults,” said Kristy Arbogast, PhD, senior author and co-lead of the Minds Matter Concussion Program at CHOP. “Providing reliable data on head impact exposure and sport-specific mechanisms may help sports organizations identify strategies to reduce impact exposure and lower the risk of acute injury.

Continue reading.

Stanford Researchers Find Culprit In Muscle Aging And How To Knock It Down
Helen Blau | March 17, 2021

Stanford Researchers Find Culprit In Muscle Aging And How To Knock It Down
Helen Blau | March 17, 2021

For well over a decade now, scientists have been experimenting with “couch potato” drugs that could confer the benefits of exercise without having to flex a muscle. The latest candidate is a small molecule inhibitor impeding the degradation of prostaglandin E2 (PGE2), recently shown to act directly on mature muscle fibers to prevent deleterious molecular changes that arise with aging, according to Helen Blau, professor of microbiology and immunology and director of the Baxter Laboratory for Stem Cell Biology at Stanford University School of Medicine.

In gel form, PGE2 is already being used to induce labor and treat respiratory distress in newborns, says Blau. It now appears that restoring PGE2 later in life could be a way to rejuvenate aging muscles and possibly treat conditions such as age-related muscle atrophy (sarcopenia), Duchenne muscular dystrophy, and other myopathies.

Continue reading.

Linda Griffith honored for contributions to biological engineering education
Linda Griffith | March 11, 2021

Linda Griffith honored for contributions to biological engineering education
Linda Griffith | March 11, 2021

The National Academy of Engineering (NAE) has announced that two MIT professors have been jointly awarded the Bernard M. Gordon Prize for Innovation in Engineering and Technology Education, the most prestigious engineering education award in the United States.

Linda G. Griffith, the School of Engineering Professor of Teaching Innovation in the Department of Biological Engineering, and Douglas A. Lauffenburger, the Ford Professor of Biological Engineering, Chemical Engineering and Biology, were recognized for their respective contributions to “the establishment of a new biology-based engineering education, producing a new generation of leaders capable of addressing world problems with innovative biological technologies,” according to an NAE statement.

Continue reading.

Olin President Gilda Barabino Named AAAS President-Elect
Gilda Barabino | March 3, 2021

Olin President Gilda Barabino Named AAAS President-Elect
Gilda Barabino | March 3, 2021

Gilda A. Barabino, Ph.D., President of Olin College of Engineering, has been selected as president-elect of the American Association for the Advancement of Science.

Barabino was elected as an AAAS Fellow in 2010 and has been a member of the organization since 1987. She began her term on Feb. 24. After serving for one year as president-elect, Barabino will serve one year as AAAS president and then one year as chair of the AAAS Board of Directors.

Continue reading.

Purigen Simplifies Simultaneous Extraction and Purification of DNA and RNA from Challenging FFPE Samples
Juan Santiago | March 2, 2021

Purigen Simplifies Simultaneous Extraction and Purification of DNA and RNA from Challenging FFPE Samples
Juan Santiago | March 2, 2021

Purigen Biosystems, Inc., a leading provider of next-generation technologies for extracting and purifying nucleic acids from biological samples, today announced the launch of the Ionic® FFPE Complete Purification Kit. Scientists are now able to consistently recover both DNA and RNA (mRNA and miRNA) simultaneously from formalin-fixed, paraffin-embedded (FFPE) tissue samples in a single workflow. Purigen is showcasing the advantages of the new kit during the virtual Advances in Genome Biology and Technology (AGBT) 2021 annual meeting.

Continue reading.

Tissue-engineered implants provide new hope for vocal injuries
Sherry Harbin | February 23, 2021

Tissue-engineered implants provide new hope for vocal injuries
Sherry Harbin | February 23, 2021

New technology from Purdue University and Indiana University School of Medicine innovators may one day help patients who suffer devastating vocal injuries from surgery on the larynx.

A collaborative team consisting of Purdue biomedical engineers and clinicians from IU has tissue-engineered component tissue replacements that support reconstruction of the larynx. The team’s work is published in The Laryngoscope.

Continue reading.

A*Star scientist Jackie Ying elected to prestigious US engineering academy based on work in Singapore
Jackie Y. Ying | February 11, 2021

A*Star scientist Jackie Ying elected to prestigious US engineering academy based on work in Singapore
Jackie Y. Ying | February 11, 2021

Agency for Science, Technology and Research (A*Star) senior fellow and head of NanoBio Lab Jackie Y. Ying has become the first scientist to be elected as a member to the prestigious United States National Academy of Engineering (NAE) based on her research in Singapore.

Recognised for her contributions in nanotechnology, Professor Ying, an American, is one of only two – among the 106 new American members elected – who are based outside the US, A*Star said in a statement on Thursday (Feb 11).

Continue reading.

Wonder Fungi
Michelle O’Malley | February 1, 2021

Wonder Fungi
Michelle O’Malley | February 1, 2021

Michelle O’Malley has long been inspired by gut microbes. Since she began studying the herbivore digestive tract, the UC Santa Barbara chemical engineering professor has guided several students to their doctoral degrees, won early and mid-career awards (including a recognition from President Obama), attained tenure and advanced to the position of full professor. She even had three children along the way. A constant through it all: goat poop.

Continue reading.

Scientists “Farm” Natural Killer Cells Using a Microfluidic Chip in Novel Cancer Fighting Approach
Sunitha Nagrath | Jan. 28, 2021

Scientists “Farm” Natural Killer Cells Using a Microfluidic Chip in Novel Cancer Fighting Approach
Sunitha Nagrath | Jan. 28, 2021

Building on the promise of emerging therapies to deploy the body’s “natural killer” immune cells to fight cancer, researchers at the University of Michigan Rogel Cancer Center and U-M College of Engineering have gone one step further.

They’ve developed what is believed to be the first systematic way to catch natural killer cells and get them to release cancer-killing packets called exosomes. These nano-scale exosomes are thousands of times smaller than natural killer cells — or NK cells for short — and thus better able to penetrate cancer cells’ defenses.

Continue reading.

Algorithms Designed to Study Language Can Predict Immune “Escape” Mutations for HIV, Influenza, and SARS-CoV-2
Bonnie Berger | January 15, 2021

Algorithms Designed to Study Language Can Predict Immune “Escape” Mutations for HIV, Influenza, and SARS-CoV-2
Bonnie Berger | January 15, 2021

By bridging the conceptual divide between human language and viral evolution, MIT researchers have developed a powerful new computational tool for predicting the mutations that allow viruses to “escape” human immunity or vaccines. Its use could negate the need for high-throughput experimental techniques that are currently employed to identify potential mutations that could allow a virus to escape recognition. The computational model, based on models that were originally developed to analyze language, can predict which sections of viral surface proteins are more likely to mutate in a way that would enable viral escape, and it can also identify sections that are less likely to mutate, which would represent good targets for new vaccines.

Continue reading.

Small molecule restores muscle strength, boosts endurance in old mice, study finds
Helen Blau | December 10, 2020

Small molecule restores muscle strength, boosts endurance in old mice, study finds
Helen Blau | December 10, 2020

Blocking the activity of a single protein in old mice for one month restores mass and strength to the animals’ withered muscles and helps them run longer on a treadmill, according to a study by researchers at the Stanford University School of Medicine. Conversely, increasing the expression of the protein in young mice causes their muscles to atrophy and weaken.

“The improvement is really quite dramatic” said Helen Blau, PhD, professor of microbiology and immunology. “The old mice are about 15% to 20% stronger after one month of treatment, and their muscle fibers look like young muscle. Considering that humans lose about 10% of muscle strength per decade after about age 50, this is quite remarkable.

Continue reading.

Medical device using Northwestern-invented biomaterial receives FDA clearance
Guillermo Ameer | October 21, 2020

Medical device using Northwestern-invented biomaterial receives FDA clearance
Guillermo Ameer | October 21, 2020

An innovative orthopedic medical device fabricated from a novel biomaterial pioneered in the laboratory of Northwestern University professor Guillermo A. Ameer has received clearance from the U.S. Food and Drug Administration (FDA) for use in surgeries to attach soft tissue grafts to bone.

The biomaterial is the first thermoset biodegradable synthetic polymer ever approved for use in an implantable medical device. It’s unique chemical and mechanical properties enable cutting-edge implant designs that protect the soft tissue graft during insertion and optimize graft fixation to bone.

Continue reading.

Melody Swartz elected to the National Academy of Medicine
Melody Swartz | October 19, 2020

Melody Swartz elected to the National Academy of Medicine
Melody Swartz | October 19, 2020

Today it was announced that Melody Swartz, William B. Ogden Professor of Molecular Engineering at the Pritzker School of Molecular Engineering (PME) at the University of Chicago, has been elected to membership in the National Academy of Medicine.

Swartz holds a joint appointment in the Ben May Department for Cancer Research and serves as deputy dean for faculty affairs at Pritzker Molecular Engineering. She is also a co-founder of the Chicago Immunoengineering Innovation Center (CIIC). Her research interests include lymphatic physiology, cancer research, and immunotherapy.

Continue reading.

Susan Margulies Elected to National Academy of Medicine
Susan Margulies | October 19, 2020

Susan Margulies Elected to National Academy of Medicine
Susan Margulies | October 19, 2020

The National Academy of Medicine (NAM) has elected Georgia Tech Professor Susan Margulies to its prestigious 2020 class. Election to NAM is considered one of the highest honors in the fields of health and medicine and recognizes individuals who have demonstrated outstanding professional achievement and commitment to service. She is only the second person from Georgia Tech to receive the honor. The late Bob Nerem, founding director of the Petit Institute for Bioengineering and Bioscience, is the other.

Margulies is the Wallace H. Coulter Professor and Chair in the Wallace H. Coulter Department of Biomedical Engineering (BME) at Georgia Institute of Technology and Emory University, a shared department between the two schools. She is also a Georgia Research Alliance Eminent Scholar in Injury Biomechanics. Her research interests center around traumatic brain injury in children and ventilator-induced lung injury with a focus in these areas on prevention, intervention and treatments.

Continue reading.

Gilda Barabino Elected to National Academy of Medicine
Gilda Barabino | October 19, 2020

Gilda Barabino Elected to National Academy of Medicine
Gilda Barabino | October 19, 2020

Olin College President Gilda A. Barabino has been elected to the National Academy of Medicine, the academy announced on Monday, October 19 at its annual meeting. Election to the Academy is considered one of the highest honors in the fields of health and medicine and recognizes individuals who have demonstrated outstanding professional achievement and commitment to service.

Barabino’s election honors her leadership and contributions in shaping and transforming the face of biomedical engineering through the integration of scientific discovery, engineering applications, and the preparation of a diverse biomedical workforce to improve human health, and for her seminal discoveries in sickle cell research.

Continue reading.

Purigen Launches New Extraction and Purification Kit that Enables Scientists to Maximize Usable DNA from Limited Biological Samples
Juan Santiago | October 14, 2020

Purigen Launches New Extraction and Purification Kit that Enables Scientists to Maximize Usable DNA from Limited Biological Samples
Juan Santiago | October 14, 2020

Purigen Biosystems, Inc., a leading provider of next-generation technologies for extracting and purifying nucleic acids from biological samples, today announced the launch of the Ionic® Cells to Pure DNA Low Input Kit for researchers working with limited biological samples. The simplified and automated 60-minute workflow delivers high-quality DNA for the rapid investigation of genetic abnormalities or examination of disease treatment effects.

The Ionic Cells to Pure DNA Low Input Kit offers consistent recovery of DNA with yields near the theoretical maximum for as many as 100,000 down to as few as 10 cultured or sorted cells. Compared to leading column-based products, the new kit delivers up to twice the amount of DNA with a significantly higher proportion greater than 20 kb in length. Regardless of the input amount, the workflow is the same and does not require carrier RNA. The prepared DNA is ready for analysis by downstream techniques such as next-generation sequencing (NGS) or qPCR.

Continue reading.

Researchers Use Lab-grown Tissue Grafts for Personalized Joint Replacement
Gordana Vunjak-Novakovic | October 14, 2020

Researchers Use Lab-grown Tissue Grafts for Personalized Joint Replacement
Gordana Vunjak-Novakovic | October 14, 2020

The temporomandibular joint (TMJ), which forms the back portion of the lower jaw and connects your jaw to your skull, is an anatomically complex and highly loaded structure consisting of cartilage and bone. About 10 million people in the United States alone suffer from TMJ dysfunction due to birth defects, trauma, or disease. Current treatments range from steroid injections that provide only a temporary pain relief, to surgical reconstructions using either prosthetic devices or donor tissue, and often fail to provide long-lasting repair. Researchers have sought a better way to treat TMJ, including investigating biological TMJ grafts grown in the lab that could integrate with the native tissues, remodel the joint over time, and provide life-long function for the patient.

Continue reading.

Skin-care product based on U of T Engineering research donated to health-care workers fighting COVID-19
Milica Radisic | October 13, 2020

Skin-care product based on U of T Engineering research donated to health-care workers fighting COVID-19
Milica Radisic | October 13, 2020

A U of T Engineering spinoff company has donated its entire stock of skin-care product to health-care workers fighting the global pandemic.

Several years ago, Professor Milica Radisic (BME, ChemE) and her team developed a peptide-hydrogel biomaterial that prompts skin cells to “crawl” toward one another. The material was initially designed to help close the chronic, non-healing wounds often associated with diabetes, such as bed sores and foot ulcers.

Continue reading.

UChicago researchers find way to improve multiple sclerosis treatment
Melody Swartz | October 12, 2020

UChicago researchers find way to improve multiple sclerosis treatment
Melody Swartz | October 12, 2020

Multiple sclerosis, an autoimmune disease of the central nervous system that affects millions worldwide, can cause debilitating symptoms for those who suffer from it.

Though treatments exist, researchers are still searching for therapies that could more effectively treat the disease, or even prevent it altogether.

Researchers at the Pritzker School of Molecular Engineering (PME) at the University of Chicago have designed a new therapy for multiple sclerosis (MS) by fusing a cytokine to a blood protein. In mice, this combination prevented destructive immune cells from infiltrating the central nervous system and decreased the number of cells that play a role in MS development, leading to fewer symptoms and even disease prevention.

Continue reading.

NAE announces winners of 2020 Simon Ramo Founders and Arthur M. Bueche Awards
Frances Ligler | October 2, 2020

NAE announces winners of 2020 Simon Ramo Founders and Arthur M. Bueche Awards
Frances Ligler | October 2, 2020

On Sunday, Oct. 4, during the 2020 annual meeting, the National Academy of Engineering (NAE) will present two awards for extraordinary impact on the engineering profession. The Simon Ramo Founders Award will be presented to Frances S. Ligler for her research contributions and leadership in engineering. The Arthur M. Bueche Award will be given to Arden L. Bement Jr. for his contributions to technology research, policy, and national and international cooperation.

Frances S. Ligler is the Ross Lampe Distinguished Professor of Biomedical Engineering in the Joint Department of Biomedical Engineering in the College of Engineering at North Carolina State University and the School of Medicine and College of Arts and Sciences at the University of North Carolina at Chapel Hill. Ligler is being recognized with the Simon Ramo Founders Award “for the invention and development of portable optical biosensors, service to the nation and profession, and educating the next, more diverse generation of engineers.” The award acknowledges outstanding professional, educational, and personal achievements to the benefit of society and includes a commemorative medal.

Continue reading.

Karen Moxon Leads $36M Effort to Improve Recovery From Spinal Cord Injuries
Karen Moxon | September 30, 2020

Karen Moxon Leads $36M Effort to Improve Recovery From Spinal Cord Injuries
Karen Moxon | September 30, 2020

Engineers at the University of California, Davis, will lead a consortium of universities, biomedical startups and nonprofit organizations to develop interventions for spinal cord injuries that can be applied within days of injury to improve long-term outcomes.

Karen Moxon, professor of biomedical engineering at UC Davis, will lead the five-year, $36 million contract as part of the Defense Advanced Research Project Agency, or DARPA, Bridging the Gap Plus Program. A primary goal is to develop technologies to stabilize a patient’s hemodynamic response, which includes blood flow and blood pressure, within days of injury.

Continue reading.

Vannevar Bush Award Given to Roderic Pettigrew, Innovator in Biomedicine and Technology
Roderic Pettigrew | September 28, 2020

Vannevar Bush Award Given to Roderic Pettigrew, Innovator in Biomedicine and Technology
Roderic Pettigrew | September 28, 2020

On September 28, 2020, the National Science Board (NSB) announced that Roderic Pettigrew will receive its prestigious Vannevar Bush Award. The award honors science and technology leaders who have made substantial contributions to the welfare of the nation through public service in science, technology and public policy.

“Roderic Pettigrew’s passion and creativity have spurred innovation in biomedicine,” said Victor McCrary, Vice Chair of the National Science Board and Chair of the 2020 NSB Honorary Awards Subcommittee. “His reimagining of healthcare solutions is helping converge science fields, narrowing gaps between disciplines in a way that really impacts society. Pettigrew is helping us to see what might be, what could be, and what is possible.”

Continue reading.

COVID test site differences, a fourth option in the works
Rebecca Richards-Kortum | September 24, 2020

COVID test site differences, a fourth option in the works
Rebecca Richards-Kortum | September 24, 2020

Rice’s Crisis Management Team plans to add a fourth and more rapid COVID-19 testing option on the Rice campus. Currently there are three sites that provide daily testing for asymptomatic students, staff and faculty who spend time on campus.

All three of these current sites (Abercrombie Engineering Laboratory, East Gym in the Tudor Fieldhouse and The Roost at Reckling Park) offer polymerase chain reaction testing. Bioengineering professor Rebecca Richards-Kortum said that her lab is working with the MD Anderson Cancer Center to develop a nucleic acid test for the fourth testing option.

Continue reading.

Introducing COVID19questions.org
Lucila Ohno-Machado | September 17, 2020

Introducing COVID19questions.org
Lucila Ohno-Machado | September 17, 2020

As the COVID-19 pandemic continues, there is an urgent need to determine who is at greatest risk for severe disease, better understand how the disease and treatments evolve, and predict the need for resources. But to get there, researchers and clinicians need more data about what patients have experienced so far, and what factors are associated with different patient outcomes.

To provide this information, a new research consortium invites clinicians, researchers, patients and the general public to submit questions that could be answered by COVID-19 patient record data from more than 200 participating hospitals. Questions are submitted and answers are provided via a new web portal: COVID19questions.org.

Continue reading.

Bone Cancer Treatment Potentially Improved by Soy
Susmita Bose | September 16, 2020

Bone Cancer Treatment Potentially Improved by Soy
Susmita Bose | September 16, 2020

Soy is widely studied for its estrogenic and anti-estrogenic effects on the body. It has been linked to a reduced risk of breast cancer and recurrence, improved heart and bone health, as well as the reduced risk of other cancers. Now researchers at Washington State University (WSU) see the potential of soy when it comes to improving post-operative treatment of bone cancer. They demonstrated the slow release of soy-based chemical compounds from a 3D-printed bone-like scaffold resulted in a reduction in bone cancer cells while building up healthy cells and reducing harmful inflammation.

Their findings, “Controlled release of soy isoflavones from multifunctional 3D printed bone tissue engineering scaffolds,” are published in the journal Acta Biomaterialia and led by graduate student Naboneeta Sarkar and Susmita Bose, PhD, professor at WSU’s School of Mechanical and Materials Engineering.

Continue reading.

Systemic equity in education
Gilda Barabino | September 11, 2020

Systemic equity in education
Gilda Barabino | September 11, 2020

Too often in higher education, the legacy of laws, policies, and practices that have systematically denied educational opportunities to Blacks is ignored, thereby perpetuating racial inequities. In the United States, higher education is a key route to career success and upward socioeconomic mobility. Unfortunately, this path is increasingly becoming most accessible to privileged communities. As the new president of Olin College of Engineering in Massachusetts, and as a woman of color, I am in a position to help unburden higher education from systemic racism and promote positive change that extends beyond academic boundaries.

Continue reading.

First Demonstration of Neuro Therapeutic Tropane Alkaloids Produced in Yeast
Christina Smolke | September 3, 2020

First Demonstration of Neuro Therapeutic Tropane Alkaloids Produced in Yeast
Christina Smolke | September 3, 2020

Researchers report the first successful microbial biosynthesis of the tropane alkaloids hyoscyamine and scopolamine, a class of neuromuscular blockers naturally found in plants in the nightshade family.

Describing a first-in-class fermentation-based approach for producing complex molecules, the paper lays the foundation for a controlled, flexible, cell-based manufacturing platform for essential medicines that currently rely on crop farming, according to research leader Christina Smolke, PhD, professor of bioengineering at Stanford University and CEO and co-founder of Antheia, a synthetic biology company making next-generation plant-inspired medicines.

Continue reading.

U of T Engineering researchers develop cell injection technique that could help reverse vision loss
Molly Shoichet | August 13, 2020

U of T Engineering researchers develop cell injection technique that could help reverse vision loss
Molly Shoichet | August 13, 2020

U of T Engineering researchers have developed a new method of injecting healthy cells into damaged eyes. The technique could point the way toward new treatments with the potential to reverse forms of vision loss that are currently incurable.

Around the world, millions of people live with vision loss due to conditions such as age-related macular degeneration (AMD) or retinitis pigmentosa. Both are caused by the death of cells in the retina, at the back of the eye.

Continue reading.

UChicago awarded $20 million to host COVID-19 medical imaging center
Maryellen Giger | August 7, 2020

UChicago awarded $20 million to host COVID-19 medical imaging center
Maryellen Giger | August 7, 2020

A new center hosted at the University of Chicago—co-led by the largest medical imaging professional organizations in the country—will help tackle the ongoing COVID-19 pandemic by curating a massive database of medical images to help better understand and treat the disease.

Led by Prof. Maryellen Giger of UChicago Medicine, the Medical Imaging and Data Resource Center (MIDRC) will create an open-source database with medical images from thousands of COVID-19 patients. The center will be funded by a two-year, $20 million contract from the National Institute of Biomedical Imaging and Bioengineering at the National Institutes of Health (NIH).

Continue reading.

Study Results from the UCSF Ci2 Suggest Deep Learning Methods Can Help Grade ACL Injuries
Sharmila Majumdar | July 29, 2020

Study Results from the UCSF Ci2 Suggest Deep Learning Methods Can Help Grade ACL Injuries
Sharmila Majumdar | July 29, 2020

Injuries to the anterior cruciate ligament (ACL) are very common, and ACL injuries increase the risk of developing post-traumatic knee osteoarthritis and total knee replacement (TKR). At present, Magnetic Resonance Imaging (MRI) is the most effective imaging modality for distinguishing structural properties of the ACL in relation to adjacent musculoskeletal structures. Several multi-grading scoring systems have been developed to standardize reporting of knee joint abnormalities using MRI including the Whole-Organ Magnetic Resonance Imaging Scale (WORMS) and the Anterior Cruciate Ligament OsteoArthritis Score (ACLOAS). However, both of these grading metrics are susceptible to inter-rater variability.

Deep learning methods have recently shown potential to serve as an aid for clinicians with limited time or experience in osteoarthritis grading of the knee menisci and cartilage. Recently a team of scientists from the UCSF Center for Intelligent Imaging (ci2) evaluated the diagnostic utility of two convolutional neural networks (CNNs) for severity staging of anterior cruciate ligament (ACL) injuries. “Previous studies have developed binary classifiers to distinguish fully torn ACLs from intact ACLs,” said Nikan Namiri, medical student at UCSF School of Medicine and corresponding author. “And our study is the first to take deep learning a step further to help classify a broader spectrum of injury, which may be more useful in the clinical setting.

Continue reading.

Rena Bizios to receive BioMedSA Award for health care, bioscience
Rena Bizios | July 29, 2020

Rena Bizios to receive BioMedSA Award for health care, bioscience
Rena Bizios | July 29, 2020

BioMedSA, the nonprofit corporation founded in 2005 to promote and grow San Antonio’s leading industry—health care and bioscience—will present its 2020 BioMedSA Award for Innovation in Healthcare and Bioscience to Rena Bizios, the Lutcher Brown Endowed Chair in UTSA’s Department of Biomedical Engineering.

Bizios is a globally recognized educator and researcher who has made pioneering contributions to biomedical engineering curricula as well as groundbreaking contributions to the understanding of cell-material interactions at the tissue/implant interface with applications in implant biomaterials, tissue engineering and tissue regeneration.

Continue reading.

Label-Free Autofluorescence Imaging Method Differentiates Between Active, and Off-Duty T Cells
Melissa Skala | July 28, 2020

Label-Free Autofluorescence Imaging Method Differentiates Between Active, and Off-Duty T Cells
Melissa Skala | July 28, 2020

Researchers headed by a team at the University of Wisconsin (UW)-Madison, and the Morgridge Institute for Research, have developed a novel label-free imaging technique that exploits autofluorescence in cells to differentiate between active and off-duty T cells, at the single cell level. They suggest the technology, known as autofluorescence lifetime imaging, could be used to help evaluate T cell involvement in immunotherapies for cancer treatment or autoimmune diseases. “It’s super novel,” said the Morgridge Institute’s Melissa Skala, PhD, who is also an associate professor of biomedical engineering at UW-Madison. “Most people aren’t using these techniques—you don’t see a lot of autofluorescence studies in immunology.”

Reporting on development and tests with the technology in Nature Biomedical Engineering, the researchers commented, “Autofluorescence lifetime imaging can be used to characterize T cells in vivo in preclinical models, in clinical applications including small blood samples (such as pediatric samples) in which antibody labeling is limited, or in cultured T cells, such as those used in biomanufactured T-cell therapies.” Their paper is titled, “Classification of T-cell activation via autofluorescence lifetime imaging.

Continue reading.

Engineering Better Medicine for Public Health Crises and the Future
Roderic Pettigrew | July 27, 2020

Engineering Better Medicine for Public Health Crises and the Future
Roderic Pettigrew | July 27, 2020

When my brother told me he had been diagnosed with COVID-19, I was scared. My memory immediately jumped to visions of his childhood struggles with asthma, which he described as having an ever-tightening chain around his chest. I thought of intubated COVID-19 patients at so many hospitals across the nation, and all of the patients who did not leave the hospitals alive. As we now know, African-American men like my brother are several times more likely to die from COVID-19 than someone who is white.

In my home state of Georgia, for example, 80 percent of all patients hospitalized due to COVID-19 in March 2020 were Black people. Nationally through June, American Indians, Native Alaskans, and Black people have had a hospitalization rate that is five times more than whites. For Hispanic people it is four times higher [2]. The compounding factors of increased rates of comorbidities, reduced access to care, limited resources inclusive of health guidance information, and even trust in mainstream medicine no doubt make these populations more vulnerable to a raging viral illness.

Continue reading.

Humanity binds us
Rod Pettigrew | July 24, 2020

Humanity binds us
Rod Pettigrew | July 24, 2020

Many were appalled by the Central Park incident where a woman used the ethnicity of a peaceful visitor and a 911 call in a failed effort to subjugate him based on his color. However, this incident was actually a service to the nation since it unveiled just how pervasive racism is in our society. As a majority person, she knew that this core racism is so systemic, and its actuation so predictable, that she could easily weaponize it. She knew there is an imbalance of power based purely on a trivial difference in skin tone. If ever there was a question about this attitude and behavior existing broadly in our society, the Central Park incident answered it. It exists, it is real, and it has resulted in multiple shocking deaths that the world has now witnessed in anguish.

When the death of Houstonian George Floyd was observed, his torture at the knee of a purveyor of this naked truth was just too much to bear. When George took his last breath, so did the national tolerance for the societal ill that took his life and the lives before him.

Continue reading.

Why Where You Live Can Impact Lung Health
Lydia Contreras | July 23, 2020

Why Where You Live Can Impact Lung Health
Lydia Contreras | July 23, 2020

It’s well known that poor air quality can lead to health problems. But research from Texas ChE faculty members Lydia Contreras and Lea Hildebrandt Ruiz uncovers new information about how air quality issues can affect important processes in the body and details how people who live in polluted areas could be at greater risk for lung disease and other illnesses.

The research, published this week in Communications Biology, examines how pollution disrupts cells’ ability to regulate themselves. The team found that when cells are exposed to a combination of pollutants typically present in congested urban areas, genetic mechanisms that lead to cholesterol production are disrupted and cells are damaged in ways not captured by traditional markers. That deregulation of cells transforms how they interact with each other, and those interactions are key to keeping cells healthy.

Continue reading.

Dee Providing Insight to New Biomedical Engineering Education Journal
Kay Dee | July 21, 2020

Dee Providing Insight to New Biomedical Engineering Education Journal
Kay Dee | July 21, 2020

Kay C Dee, associate dean of learning and technology and professor of biomedical engineering, is lending her expertise in cell and tissue engineering, biomaterials, and engineering education as an associate editor of the Biomedical Engineering Society’s new Biomedical Engineering Education journal.

This international journal presents articles on the practice and scholarship of education in bioengineering, biomedical engineering, and allied fields. It documents and shares advances in the field as educators support student learning. The journal also passes along valuable insight into research, teaching, novel course content, laboratory experiments and demonstrations, educational outreach, and advising and professional development.

Continue reading.

COVID-19 vaccine development and a potential nanomaterial path forward
Nicole Steinmetz | July 15, 2020

COVID-19 vaccine development and a potential nanomaterial path forward
Nicole Steinmetz | July 15, 2020

The COVID-19 pandemic has infected millions of people with no clear signs of abatement owing to the high prevalence, long incubation period and lack of established treatments or vaccines. Vaccines are the most promising solution to mitigate new viral strains. The genome sequence and protein structure of the 2019-novel coronavirus (nCoV or SARS-CoV-2) were made available in record time, allowing the development of inactivated or attenuated viral vaccines along with subunit vaccines for prophylaxis and treatment. Nanotechnology benefits modern vaccine design since nanomaterials are ideal for antigen delivery, as adjuvants, and as mimics of viral structures. In fact, the first vaccine candidate launched into clinical trials is an mRNA vaccine delivered via lipid nanoparticles. To eradicate pandemics, present and future, a successful vaccine platform must enable rapid discovery, scalable manufacturing and global distribution. Here, we review current approaches to COVID-19 vaccine development and highlight the role of nanotechnology and advanced manufacturing.

Continue reading.

Connecting donated human lungs to pigs repaired damage to the organs, scientists report
Gordana Vunjak-Novakovic | July 13, 2020

Connecting donated human lungs to pigs repaired damage to the organs, scientists report
Gordana Vunjak-Novakovic | July 13, 2020

For people who need a lung transplant, the wait is often prolonged by the frustrating fact that most donor organs have to be discarded: Only 20% of donated lungs meet medical criteria for transplantation, translating into far fewer organs than people on waiting lists. Now, a team of researchers has shown they might be able to salvage more of these lungs by borrowing a pig’s circulatory system.

Delicate lungs recovered from donors are typically connected to perfusion machines that keep oxygen and nutrients flowing to maintain viability, but that works for only about six hours, not long enough for often-injured lung tissue to recover before the organ fails.

Continue reading.

A urine test for lung cancer? Nanosensors make it possible
Sangeeta Bhatia | July 10, 2020

A urine test for lung cancer? Nanosensors make it possible
Sangeeta Bhatia | July 10, 2020

Harvard and MIT researchers teamed up to develop a novel screening test that could identify lung cancer a lot earlier and easier than current methods. The test detects lung cancer using nanoprobes, which send out reporter molecules that are picked up on urine analysis. This breakthrough, which is more sensitive than CT and delivers on a proof-of-concept experiment originally proposed in 2017, was recently detailed in a study published in Science Translational Medicine.

“What if you had a detector that was so small that it could circulate in your body, find the tumor all by itself, and send a signal to the outside world?” asked lead author Sangeeta Bhatia, MD, PhD, at a 2016 TED Talk. “It sounds a little like science fiction. But actually, nanotechnology allows us to do just that.

Continue reading.

Dr. Cato T. Laurencin’s COVID-19 Mask Solution Coming to Market
Cato Laurencin | July 2, 2020

Dr. Cato T. Laurencin’s COVID-19 Mask Solution Coming to Market
Cato Laurencin | July 2, 2020

Within six weeks of announcing a successful method to fabricate custom-fit mask frames to optimize protection from the spread of COVID-19, UConn has a licensing deal with a Connecticut manufacturer to produce them.

Connecticut Biotech, a startup company headquartered in South Windsor, aims to start marketing, manufacturing, and distributing 3D-printed mask frames under the brand Secure Fit this month.

“This is an important technology that can help a lot of people by providing a specific way to make regular surgical masks more protective,” says Dr. Cato T. Laurencin, CEO of the Connecticut Convergence Institute for Translation in Regenerative Engineering. “It’s wonderful to see technology that started here in the state of Connecticut being developed by a Connecticut company.

Continue reading.

Human element shouldn’t be neglected with AI
Elizabeth Krupinski | June 25, 2020

Human element shouldn’t be neglected with AI
Elizabeth Krupinski | June 25, 2020

Sure, artificial intelligence (AI) in radiology is cool. But it’s not enough to show results in a lab; the technology’s real-world impact on efficacy and efficiency also needs to be evaluated, according to a June 25 talk at the virtual annual meeting of the Society for Imaging Informatics in Medicine (SIIM).

It’s also crucial to ascertain how radiology AI affects radiologists’ perception, cognition, human factors, and workflow, according to Elizabeth Krupinski, PhD, of Emory University.

Continue reading.

Calcium helps build strong cells
Kris Dahl | June 19, 2020

Calcium helps build strong cells
Kris Dahl | June 19, 2020

Every time you flex your bicep or stretch your calf muscle, you put your cells under stress. Every move we make throughout the day causes our cells to stretch and deform. But this cellular deformation can be dangerous, and could potentially lead to permanent damage to the DNA in our cells, and even cancer. So how is it that we’re able to keep our bodies moving without constantly destroying our cells? Thanks to a new study by Carnegie Mellon University Chemical Engineering (ChemE) Professor Kris Noel Dahl, and Associate Professor Sara Wickström of the University of Helsinki, we now know that the answer lies in a humble mineral we consume every day.

“Basically, every time we flex a muscle, we’re risking DNA damage that could lead to cancer,” says Dahl. “Or we would be, that is, if it weren’t for the calcium in our cells.”

Their recent paper published in Cell marks the first time that researchers have definitively shown how cells maintain their structural integrity despite the strain of mechanical forces.

Continue reading.

NSF RAPID grant supports COVID-19 ‘computational pipeline’
Lydia Kavraki | June 16, 2020

NSF RAPID grant supports COVID-19 ‘computational pipeline’
Lydia Kavraki | June 16, 2020

Lydia Kavraki, the Noah Harding Professor of Computer Science at Rice, has received a National Science Foundation (NSF) Rapid Response Research grant to implement a computational pipeline to help identify fragments of SARS-CoV-2 viral proteins that could be used as targets for vaccine development.

“Efforts are already underway to produce new drug inhibitors, repurpose existing drugs and devise combination treatments for COVID-19,” said Kavraki, who is also a professor of bioengineering, electrical and computer engineering and mechanical engineering.

Continue reading.

How rod-shaped particles might distract an out-of-control COVID immune response
Lola Eniola-Adefeso | June 10, 2020

How rod-shaped particles might distract an out-of-control COVID immune response
Lola Eniola-Adefeso | June 10, 2020

A long-ignored white blood cell may be central to the immune system overreaction that is the most common cause of death for COVID-19 patients—and University of Michigan researchers found that rod-shaped particles can take them out of circulation.

The No. 1 cause of death for COVID-19 patients echoes the way the 1918 influenza pandemic killed: their lungs fill with fluid and they essentially drown. This is called acute respiratory distress syndrome. But a new way of drawing immune cells out of the lungs might be able to prevent this outcome. This research is among the essential projects at U-M that have continued through the pandemic uninterrupted.

Continue reading.

Prophylactic Drug Delivery System for COVID-19
Heather Sheardown | May 22, 2020

Prophylactic Drug Delivery System for COVID-19
Heather Sheardown | May 22, 2020

The Heather Sheardown lab (McMaster University, Canada) is home to an interdisciplinary team of scientists and trainees with expertise in ophthalmology, polymer and biomaterial engineering, chemistry, pharmaceutical formulation and drug delivery, animal/ex-vivo/in-vitro models of disease and drug delivery, early stage material design and synthesis, and synthetic method scalability optimization.

As the availability of a SARS-CoV-2 vaccine is still far off, there is an immediate global need for prophylactic prevention strategies, particularly for vulnerable populations including seniors and frontline workers. The Sheardown lab has developed a mucoadhesive polymeric micelle that allows for the encapsulation of a range of therapeutics, providing local, controlled delivery to mucosal surfaces. This technology overcomes traditional solubility concerns, allowing formulations at higher drug concentrations. Its mucosal binding significantly reduces dosing frequency, increases local bioavailability and improves clinical efficacy. Developed and validated for safety and efficacy in the eye, this system is now being repurposed for the mucosa of the respiratory tract, formulated as a nasal spray or inhaled aerosol, incorporating two treatments that are currently under study internationally: hydroxychloroquine (HCQ) and remdisivir.

Continue reading.

UC Davis engineering projects fight COVID-19
Cristina Davis | May 20, 2020

UC Davis engineering projects fight COVID-19
Cristina Davis | May 20, 2020

With new seed grants from the UC Davis Office of Research’s COVID-19 Research Accelerator Funding Track (CRAFT), three teams of UC Davis engineers are applying their expertise toward the pandemic response to help people become safer, healthier and better-tested.

Mechanical and aerospace engineering (MAE) professor and chair Cristina Davis and chemical engineering (CHE) faculty Priya Shah, Karen McDonald and Roland Faller received $25,000 project awards for research that rapidly generates new insights about COVID-19, while biological and agricultural engineering (BAE) professor Gang Sun received a $5,000 small award to apply current research to the pandemic response. These proposals were chosen out from more than 100 applications and were awarded with the expectation that these projects will lead to larger collaborations.

Continue reading.

Natalia Trayanova to use machine learning to predict heart damage in COVID-19 victims
Natalia Trayanova | May 18, 2020

Natalia Trayanova to use machine learning to predict heart damage in COVID-19 victims
Natalia Trayanova | May 18, 2020

Johns Hopkins researchers recently received a $195,000 Rapid Response Research grant from the National Science Foundation to, using machine learning, identify which COVID-19 patients are at risk of adverse cardiac events such as heart failure, sustained abnormal heartbeats, heart attacks, cardiogenic shock and death.

Increasing evidence of COVID-19’s negative impacts on the cardiovascular system highlights a great need for identifying COVID-19 patients at risk for heart problems, the researchers say. However, no such predictive capabilities currently exist.

“This project will provide clinicians with early warning signs and ensure that resources are allocated to patients with the greatest need,” says Natalia Trayanova, the Murray B. Sachs Professor in the Department of Biomedical Engineering at The Johns Hopkins University Schools of Engineering and Medicine and the project’s principal investigator.

Continue reading.

“Microbubbles” and ultrasound bombard cancer cells in mice
Katherine Ferrara | May 14, 2020

“Microbubbles” and ultrasound bombard cancer cells in mice
Katherine Ferrara | May 14, 2020

In the lab of Katherine Ferrara, PhD, bubbles spell trouble for cancer cells in mice — and maybe one day for humans, too.

Specifically, Ferrara, a Stanford Medicine professor of radiology, is using “microbubbles” to damage the structure of cancer cells and cause them to die. The tiny gas-filled spheres are approved by the U.S. Food and Drug Administration and are typically used to enhance vasculature imaging in patients. However, Ferrara and her team have repurposed them for a new type of targeted cancer therapy guided by ultrasound.

The new treatment platform is designed to deliver a one-two punch. First, the microbubbles attack cancer cells, then an additional therapeutic agent, such as a gene, beckons immune cells to further pummel the tumor.

Continue reading.

Researchers to develop AI to help diagnose, understand COVID-19 in lung images
Maryellen Giger | May 6, 2020

Researchers to develop AI to help diagnose, understand COVID-19 in lung images
Maryellen Giger | May 6, 2020

As physicians and researchers grapple with a rapidly-spreading, deadly and novel disease, they need all the help they can get. Many centers are exploring whether artificial intelligence can help fight COVID-19, extracting knowledge from complex and rapidly growing data on how to best diagnose and treat patients.

One University of Chicago and Argonne National Laboratory collaboration believes that AI can be a helpful clinical partner for a particularly important kind of medical data: images. Because severe cases of COVID-19 most often present as a respiratory illness, triggering severe pneumonia in patients, chest X-rays and thoracic CT scans are a potential exam. With a grant from the new c3.ai Digital Transformation Institute, computer-aided diagnosis expert Maryellen Giger will lead an effort to develop new AI tools that use these medical images to diagnose, monitor and help plan treatment for COVID-19 patients.

Continue reading.

MRI Technique Could Reduce Radiation Dose in Assessing Pediatric Cancer Treatment
Heike Daldrup-Link | May 5, 2020

MRI Technique Could Reduce Radiation Dose in Assessing Pediatric Cancer Treatment
Heike Daldrup-Link | May 5, 2020

Using whole body diffusion-weighted magnetic resonance imaging (DW MRI) to evaluate the efficacy on cancer treatment in children can potentially provide a more than three-quarters cut in radiation exposure, according to new research.

A study, funded by the National Institutes of Health (NIH), published today in Radiology shows that DW MRI can track tumor response to therapy as effectively as techniques using CT scans, but without radiation.

The researchers had financial support from the NIH Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD).

Continue reading.

María José Alonso leads a USC project aimed at developing a new vaccine against COVID-19 based on mRNA
María José Alonso | May 4, 2020

María José Alonso leads a USC project aimed at developing a new vaccine against COVID-19 based on mRNA
María José Alonso | May 4, 2020

Developing and evaluating in preclinical studies a new vaccine based on mRNA against SARS-CoV2 capable of inducing long-term immune responses against the virus is the ultimate goal of the research project in which the laboratory led by María José Alonso participates together with the group led by Mabel Loza, both at CiMUS and FIDIS – University of Santiago de Compostela (USC). The objective of the USC laboratories is to produce a synthetic vehicle based on innocuous biomaterials, capable of transporting the mRNA into the target cells and enabling the production of the antigen in the human body.

The project has obtained funding from the Health Department of the Generalitat de Catalunya and the Carlos III Health Institute (ISCIII).

Continue reading.

NLM Highlights Essential Role of Clinical Databases in Pandemic
Patricia Brennan | May 4, 2020

NLM Highlights Essential Role of Clinical Databases in Pandemic
Patricia Brennan | May 4, 2020

The National Library of Medicine is embarking on an extensive modernization effort of the world’s largest public clinical trial registry and results database, ClinicalTrials.gov, with the COVID-19 response underpinning the importance of the multi-year project.

“This effort to improve the user experience and update the technology platform is critically important for so many things that we do at NIH, our partnerships across the government and our commitment to the American public — the taxpayers and the research participants,” Kelly Wolinetz, associate director for the agency’s Office of Science Policy and NIH’s acting chief of staff, said in a virtual public meeting Thursday.

Continue reading.

Bonnie Berger elected to the National Academy of Sciences for 2020
Bonnie Berger | May 1, 2020

Bonnie Berger elected to the National Academy of Sciences for 2020
Bonnie Berger | May 1, 2020

On April 27, the National Academy of Sciences elected 120 new members and 26 international associates, including three professors from MIT — Abhijit Banerjee, Bonnie Berger, and Roger Summons — recognizing their “distinguished and continuing achievements in original research.” Current membership totals 2,403 active members and 501 international associates, including 190 Nobel Prize recipients.

The National Academy of Sciences is a private, nonprofit institution for scientific advancement established in 1863 by congressional charter and signed into law by President Abraham Lincoln. Together, with the National Academy of Engineering and the National Academy of Medicine, the 157-year-old society provides science, engineering, and health policy advice to the federal government and other organizations.

Bonnie Berger is the Simons Professor of Mathematics and holds a joint appointment in the Department of Electrical Engineering and Computer Science. She is the head of the Computation and Biology group at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL). She is also a faculty member of the Harvard-MIT Program in Health Sciences and Technology and an associate member of the Broad Institute of MIT and Harvard.

Continue reading.

Breakthrough helps fight ‘cold’ tumors that don’t respond to immunotherapy
Melody Swartz | April 30, 2020

Breakthrough helps fight ‘cold’ tumors that don’t respond to immunotherapy
Melody Swartz | April 30, 2020

Immunotherapy, which unleashes the power of the body’s own immune system to find and destroy cancer cells, has shown promise in treating several types of cancer.

But the disease is notorious for cloaking itself from the immune system, and tumors that are not inflamed and do not elicit a response from the immune system—so-called “cold” tumors—do not respond to immunotherapies.

Researchers at the Pritzker School of Molecular Engineering at the University of Chicago have taken a step toward solving this problem with an innovative immunotherapy delivery system. The system finds tumors by seeking out and binding to the tumors’ collagen, then uses a protein called IL-12 to inflame the tumor and activate the immune system, thereby activating immunotherapy.

Continue reading.

Texas A&M Chemist Karen Wooley Elected To National Academy Of Sciences
Karen Wooley | April 29, 2020

Texas A&M Chemist Karen Wooley Elected To National Academy Of Sciences
Karen Wooley | April 29, 2020

Texas A&M University Distinguished Professor of Chemistry Karen L. Wooley has been elected to the National Academy of Sciences.

Wooley, holder of the W.T. Doherty-Welch Chair in Chemistry and one of the world’s top chemists in the burgeoning field of materials and polymer chemistry and in creating new materials at the nanoscale level, is among the 120 new members and 26 foreign associates announced Monday, April 27)by the Academy on the final day of its 157th Annual Meeting in recognition of their distinguished and continuing achievements in original research. Election to Academy membership is a widely accepted mark of excellence in science and is considered one of the highest honors that a scientist can receive.

Continue reading.

BU Engineers Are Taking on the Coronavirus Pandemic
Joyce Wong and Catherine Klapperich | April 17, 2020

BU Engineers Are Taking on the Coronavirus Pandemic
Joyce Wong and Catherine Klapperich | April 17, 2020

Across Boston University’s School of Engineering, researchers are pivoting their work to tackle the many engineering problems associated with the global coronavirus pandemic.

“I’m glad I’m an engineer right now,” says Joyce Wong, professor of biomedical and materials science engineering. “There are so many problems that need to be solved in this crisis and I can actually use my expertise to help.”

Wong, like many other engineers and researchers, is diving in to do what she can to mitigate the COVID-19 pandemic. These efforts are in addition to the first wave of help, across BU’s Charles River and Medical Campuses, that gathered personal protective equipment (PPE) from labs—shuttered by Governor Charlie Baker’s stay-at-home advisory—to donate to healthcare workers in Massachusetts. Here are four ways that BU engineers are using technology to tackle the coronavirus pandemic:

Continue reading.

Making sense of scents: 3D videos reveal how the nose detects odor combinations
Elizabeth Hillman | April 9, 2020

Making sense of scents: 3D videos reveal how the nose detects odor combinations
Elizabeth Hillman | April 9, 2020

Every moment of the day we are surrounded by smells. Odors can bring back memories, or quickly warn us that food has gone bad. But how does our brain identify so many different odors? And how easily can we untangle the ingredients of a mixture of odors? In a new study in mice published today in Science, Columbia scientists have taken an important step toward answering these questions, and the secret lies inside the nose.

“From garbage to cologne, the scents we encounter every day are comprised of hundreds or even thousands of individual odors,” said Stuart Firestein, PhD, a Columbia professor of biological sciences and the co-senior author of today’s study. “Your morning cup of coffee can contain more than 800 different types of odor molecules. Although much work has been done to understand how the nose and brain work together to identify individual odors, scientists have long struggled to explain how this system works when multiple odors are mixed together.

Continue reading.

UConn Researchers Find Blacks Are Disproportionately Impacted By COVID-19
Cato Laurencin | April 8, 2020

UConn Researchers Find Blacks Are Disproportionately Impacted By COVID-19
Cato Laurencin | April 8, 2020

The team led by Dr. Cato T. Laurencin, former dean of the UConn School of Medicine, analyzed and reviewed the Department of Public Health’s data on COVID-19 outcomes and found that Blacks have a higher rate of infection and death in comparison to the percentage of the population they represent in the state.

However, the information collected on race and ethnicity is incomplete.

“The scarcity of this information generates a more substantial concern in which insufficiently identifying the affected may ultimately result in historically marginalized groups shouldering the greatest burden of disease and disproportionately bearing the social impact,” Laurencin and his team wrote in their paper.

Continue reading.

Gel smooths cells’ ride through syringes in regenerative therapy
Sarah Heilshorn | April 8, 2020

Gel smooths cells’ ride through syringes in regenerative therapy
Sarah Heilshorn | April 8, 2020

An innovative delivery technology vastly improves the viability of tissue regenerating cells, and enhances strength and coordination in animals with spinal-cord injury.

In a study published in Science Advances, Stanford neurosurgical researcher Giles Plant, PhD, and materials engineer Sarah Heilshorn, PhD, and their colleagues report that a customized gel — developed in Heilshorn’s lab as a shock absorber for regenerative cells during and after their perilous journey through the tip of a syringe to the targeted tissue — kept those cells safe.

As a vehicle for delivering regenerative cells to rats with movement-impairing spinal-cord injuries, this gel overwhelmingly outperformed saline (the current clinical standard). It boosted the numbers of successfully-delivered cells by more than sevenfold compared with saline, as measured two days after the procedure. At four weeks, the gel’s advantage over saline was more than tenfold.

Continue reading.

New sensors could offer early detection of lung tumors
Sangeeta Bhatia | April 1, 2020

New sensors could offer early detection of lung tumors
Sangeeta Bhatia | April 1, 2020

People who are at high risk of developing lung cancer, such as heavy smokers, are routinely screened with computed tomography (CT), which can detect tumors in the lungs. However, this test has an extremely high rate of false positives, as it also picks up benign nodules in the lungs.

Researchers at MIT have now developed a new approach to early diagnosis of lung cancer: a urine test that can detect the presence of proteins linked to the disease. This kind of noninvasive test could reduce the number of false positives and help detect more tumors in the early stages of the disease.

Continue reading.

New Biochip Tech Shows Promise in Traumatic Hemorrhage Outcomes
Anthony Guiseppi-Elie | March 20 2020

New Biochip Tech Shows Promise in Traumatic Hemorrhage Outcomes
Anthony Guiseppi-Elie | March 20 2020

Traumatic hemorrhage is a condition of bleeding resulting from a significant wound; such wounds as might be sustained in an automobile accident, a natural disaster such as a tornado, or on the battlefield (combat casualty).

Trauma accounts for 47% of mortalities in individuals 1-46 years of age in the United States and is the most likely source of demise for the warfighter (50-68%). Trauma-induced hemorrhage can, beyond the “golden hour,” lead to death or may be followed by Multiple Organ Dysfunction Syndrome (MODS), a consequence of a “cytokine storm,” and be fatal.

Anthony Guiseppi-Elie, ScD, is a biomedical engineer who studies the pathophysiology of hemorrhage using biosensors and serves as TEES Professor of Engineering, professor of biomedical engineering and professor of electrical and computer engineering at Texas A&M University in College Station, Texas and is a Full Affiliate Member, Houston Methodist Research Institute in the Texas Medical Center in Houston, Texas.

Continue reading.

Coronavirus Testing Shouldn’t Be This Complicated
Catherine Klapperich | March 17 2020

Coronavirus Testing Shouldn’t Be This Complicated
Catherine Klapperich | March 17 2020

Engineers have the technology to make it better

The US reported its first confirmed case of COVID-19 on January 21st. Eight weeks later, there still aren’t enough tests for the virus available for everyone who needs them. “It is a failing,” said Anthony Fauci, director of the National Institutes of Allergy and Infectious Diseases, at a House briefing last week. “The system is not really geared to what we need right now.”

People who are sick or have been in contact with sick people are struggling to get tested. Until last week, the number of tests that could be run per day in the United States was limited to around 7,000. Labs are struggling to get the supplies they need to meet the demand.

Continue reading.

Ranu Jung on Neural Engineering and Her Philosophy Behind Bringing Discoveries to Humans
Ranu Jung | March 16, 2020

Ranu Jung on Neural Engineering and Her Philosophy Behind Bringing Discoveries to Humans
Ranu Jung | March 16, 2020

As director of the Adaptive Neural Systems Laboratory and the owner of more than a half dozen patents, Ranu Jung designs neural engineering projects that drive the process of transforming basic discoveries into clinical applications. In this interview she explains how collaborative projects can at once advance the understanding of the brain and the development of medical devices. She also talks about what sparks questions for her, the advantages of adaptability, and where to find support.

This article is part of Neuronline’s interview series “Entrepreneurial Women Combining Neuroscience, Engineering, and Tech,” which highlights the career paths and scientific accomplishments of female leaders and role models who are creatively bridging disciplines to improve lives.

Continue reading.

CHOP Study Demonstrates How to Collect True Impact Incidents from Head Impact Sensors in Youth Sports
Kristy Arbogast | March 11, 2020

CHOP Study Demonstrates How to Collect True Impact Incidents from Head Impact Sensors in Youth Sports
Kristy Arbogast | March 11, 2020

An increased awareness of concussion risks in young athletes has prompted researchers to use a variety of head impact sensors to measure frequency and severity of impacts during sports. A new study from Children’s Hospital of Philadelphia (CHOP) shows these head sensors can record a large number of false positive impacts during real game play. The CHOP team’s study emphasizes that an extra step to video-confirm the sensor data is essential for research and for use of this data in injury prevention strategies for player safety.

The findings were published online this month by the American Journal of Sports Medicine.

Approximately 1 in 5 high school athletes who plays a contact sport – such as soccer, lacrosse, and American football – suffers a concussion each year. To understand the frequency, magnitude and direction of head impacts that athletes sustain, a wide variety of sensors have been developed to collect head impact biomechanics data, including instrumented helmets, skull caps, headbands, mouthguards and skin patches.

Continue reading.

New Classification System Developed for Regenerative Cell-Based Therapies
Cato Laurencin | February 19, 2020

New Classification System Developed for Regenerative Cell-Based Therapies
Cato Laurencin | February 19, 2020

Doctors at UConn Health have developed the first classification system for regenerative cell-based therapies designed to stratify therapies based on scientific evidence and potential for harm. Today, there are concerns regarding the clinical safety and efficacy of cell-based therapies throughout the scientific community and within public discourse. The unregulated U.S. stem cell market has been widely reported as it offers potentially harmful therapies to patients without FDA approval. Currently, there are no regenerative cell-based therapies approved by the FDA, although high demand for such treatments is ongoing.

In light of these concerns, the current climate has generated demand for a systematic method to assess potential therapies. Dr. Cato T. Laurencin, CEO of The Connecticut Convergence Institute for Translation in Regenerative Engineering at UConn Health, has created a new classification system for cell-based therapies. The objective was to create a strategy that will benefit patients, encourage regulatory efforts, and further inform the scientific community.

“The rapidly expanding direct-to-consumer marketplace allows for public consumption of unregulated treatments, so we identified an opportunity to enhance regulation and ensure greater public health,” says Laurencin.

The new system will aid in categorizing proposed interventions to determine suitability for immediate clinical use or therapies that require further investigational studies prior to clinical use. Utilization of this system will result in increased regulation and widespread standardization, which in turn decreases patient health and financial risks associated with unregulated treatments. To learn more about the new classification system, view the newly published article here.

Continue reading.

Cocoa could bring sweet relief to walking pain for people with peripheral artery disease
Melina Kibbe | February 14, 2020

Cocoa could bring sweet relief to walking pain for people with peripheral artery disease
Melina Kibbe | February 14, 2020

Consumption of cocoa may improve walking performance for patients with peripheral artery disease, according to the results of a small, preliminary, phase II research trial published today in the American Heart Association’s journal Circulation Research.

In a small study of 44 peripheral artery disease patients over age 60, those who drank a beverage containing flavanol-rich cocoa three times a day for six months were able to walk up to 42.6 meters further in a 6-minute walking test, compared to those who drank the same number and type of beverages without cocoa. Those who drank the flavanol-rich cocoa also had improved blood flow to their calves and some improved muscle function compared to the placebo group…

Continue reading.

FDA grants de novo clearance for vascular access device
Gabi Niederauer | February 13, 2020

FDA grants de novo clearance for vascular access device
Gabi Niederauer | February 13, 2020

The FDA has granted a de novo classification order to Bluegrass Vascular Technologies for its Surfacer Inside-Out Access Catheter System. The device was designed to enable central venous access in patients with venous obstructions, according to a press release.

“The Surfacer system offers a safe and effective approach to reliably preserve and restore critical upper body vascular access sites,” Mahmood Razavi, MD, an interventional radiologist at St. Joseph Hospital in Orange, California, and lead principal investigator of the Surfacer System to Facilitate Access in Venous Occlusions – United States (SAVE-US) IDE study, said in the release. “This is an unmet clinical need for patients who require life-saving therapies, such as dialysis, and who have limited options due to venous obstructions…

Continue reading.

Susan Margulies Elected to National Academy of Engineering
Susan Margulies | February 11, 2020

Susan Margulies Elected to National Academy of Engineering
Susan Margulies | February 11, 2020

Four Georgia Institute of Technology faculty members have been elected as new members of the National Academy of Engineering (NAE). Marilyn Brown, Thomas Kurfess, Susan Margulies, and Alexander Shapiro join 83 other new NAE members for 2020 when they are formally inducted during a ceremony at the academy’s annual meeting on Oct. 4 in Washington, D.C.

Election of new NAE members, the culmination of a yearlong process, recognizes individuals who have made outstanding contributions to “engineering research, practice, or education, including, where appropriate, significant contributions to the engineering literature” and to “the pioneering of new and developing fields of technology, making major advancements in traditional fields of engineering, or developing/implementing innovative approaches to engineering education…

Continue reading.

Laura Niklason Elected To The National Academy of Engineering
Laura Niklason | February 7, 2020

Laura Niklason Elected To The National Academy of Engineering
Laura Niklason | February 7, 2020

Laura Niklason, the Nicholas M. Greene Professor in Anesthesia and Biomedical Engineering, has been elected to the National Academy of Engineering (NAE).

Cited for her contributions to research in cardiovascular tissue engineering, lung regeneration, and biomedical imaging, Niklason was among 87 new members elected to the academy. Niklason will be formally inducted during a ceremony at the NAE’s annual meeting in Washington, D.C., on Sept. 30, 2018…

Continue reading.